多项式线性回归总结

本文主要探讨多项式线性回归,包括简单线性回归的函数表达式,并介绍了多项式回归的转换方法,同时提供了相关代码实现。文章还提到了一个有价值的博客链接供读者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里主要记录多项式线性回归,会附带一部分简单线性回归的讲解

线性回归其实是典型的参数训练的机器学习方法,而且专门解决回归问题

首先先讲下简单线性回归

简单线性回归

函数表达式

y=ax+b

其中

代码实现

import numpy as np
import matplotlib.pyplot as plt


class SimpleLinearRegression:
    def __init__(self):
        self.a_ = None
        self.b_ = None

    #模型训练
    def fit(self, x, y):
        assert x.ndim == 1, "illegle x"
        assert len(x) == len(y), "this size of x_train must be equal to the size of y_train"
        num = 0
        d = 0
        # 用for循环耗时长,需要消耗大量的计算资源
        # for x_i, y_i in zip(x, y):
        #     num += (x_i - np.mean(x))*(y_i - np.mean(y))
        #     d += (x_i - np.mean(x))**2
        # 用向量点乘的方式可以让运算时长变短
        num = (x-np.mean(x)).dot(y-np.mean(y))
        d = (x-np.mean(x)).dot(x-np.mean(x))

        self.a_ = num/d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值