VoxelNet点云检测详解

VoxelNet是一种早期的点云检测模型,由苹果公司提出,它通过将点云数据转化为有序的Voxel特征,实现端到端的检测。模型包括特征学习网络、中间卷积层和区域提议网络。特征学习网络中,点云被划分为Voxel,通过Grouping和Sampling处理,然后使用Voxel Feature Encoding进行特征提取。中间卷积层通过3D卷积聚合局部关系,区域提议网络则利用RPN进行预测。损失函数基于正负样本匹配规则和 SmoothL1 函数,同时采用数据增强提升模型泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、前言

        精确的点云检测在很多三维场景的应用中都是十分重要的一环,比如家用机机器人、无人驾驶汽车等场景。然而高效且准确的点云检测在pointnet网络提出之前,一直没能取得很好的进展,因为传统的手工点云特征提取会造成信息不能被高效提取并且人为设计的特征无法满足点云检测场景下信息的不变性;造成了点云信息被利用的瓶颈。所以VoxelNet打破了这一限制,使得点云检测的框架从手工特征提取变成了端到端的机器自动学习所需的信息。

        VoxelNet是一篇比较早的点云检测模型了,由苹果公司在2016年提出。它完成了点云的端到端的检测。直接使用PointNet网络作为点云特征提取器,完成对点云的特征提取,这也使得整个检测网络相比于之前的特征提取方式更加高效;提取的特征也具有更好的泛化性能;使得该模型在当时的KITTI点云检测中也取得了SOTA的成绩。

VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection:
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NNNNNathan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值