Numpy索引与切片

本文介绍了NumPy中二维数组的索引和切片操作,包括单行或单列索引、多元素索引、选择数组块以及不相邻数组块的选择。强调了索引与切片的区别,如索引会降维而切片保持原维度。同时,提示读者索引和切片只会提供原数组的视图,不会复制数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二维索引与切片简介

import numpy as np
arr = np.arange(28).reshape(7, 4)

1.索引某行或某列只用一个元素,多行用多行索引。

arr[2]  # 行索引
arr[:, 3]  # 列索引
arr[[1, 2, 4]]  # 多行索引

2.索引具体元素时用逗号分隔行与列

arr[1, 3]  # 第二行第三列的索引值
arr[[1, 2], [1, 2]]  # 多元素索引(神奇索引)

3.选择数组快

arr[:2, :3]  # 第1,2行中的第1,2,3列

4.选择不相邻的数组快

arr[[1, 2]][:, [0, 3]]  # 行和列分别用两个方括号包含,方括号中内嵌方括号

Tips:

1.索引与切片仅提供原数组的视图,并不会复制数组。(牵一发而动全身)

2.索引([ , ])将符合条件的元素组成一个数组,即:多维变成一维;而切片([ : , : ])不会降维。

arr[0, :2]  # 索引降维
arr[:, :1]  # 切片不降维
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值