本文是对BiliBili上的一个系列视频的学习记录,非常推荐大家去B站上观看,记得三连,不要白嫖,链接:https://www.bilibili.com/video/av6731067?p=4
Unfortunately, no one can be told what the Matrix is. You have to see it for yourself. -Morpheus
很遗憾,矩阵是什么是说不清的。你必须自己亲眼看看。——墨菲斯
本节的主要思想:将矩阵视为变换本身,或者说矩阵==变换,矩阵就是变换
“变换”本身是“函数”的一种花哨的说法,他接收一个输入并输出一个结果,特别的在线性代数中,我们考虑的是接收一个向量并输出一个向量的变换。
使用“变换”和使用“函数”的意义是一致的,那么为什么使用变换一词呢?
使用“变换”是在暗示以特定方式来可视化这一输入——输出关系,这个词在暗示用动态的思维去思考。
当一个输入向量通过某种线性变换形成一个输出向量时,可以认为这个变换是描述输入向量到输出向量的移动与拉伸(这个过程)。
在线性代数中所考虑的只是线性变换,他具有两个性质:
1.直线在变换后任然是直线,不能有所弯曲
2.原点必须保持固定
而如何用数值形式来描述变换本身,是本节的主题。
将空间向量表示为,空间坐标基的线性组合,应该是符合习惯的,那么向量的表示形式应该如下:
(a,b是常数,i,j是空间坐标基)
而向量的坐标表示,就体现了这种线性关系
因为变换后的向量与原向量是线性关系,而任意向量与其空间坐标基是线性关系,所以只需记录基向量的坐标结果,则任意向量的变换结果已知。
设,基向量在变换后的为:
那么向量,变换后的结果为:
所以,基向量在变换后得到的新向量,就已经确定了一个线性变换,一个二维线性变换仅由四个数字完全确定。
而我们常将变换后的基向量放在一起,称为矩阵(下面是一个2*2矩阵),他由特殊向量组成,即变换后的空间坐标基:
现在,如果你有一个描述线性变换的矩阵和一个向量,那么这个线性变换对这个向量的作用是很好求出的:
已知的线性变换,向量
,作用:
这与“缩放基向量再相加”的思想一致,而上式可以定义为矩阵向量乘法:
若与
线性相关,那么这个线性变换将二维空间压缩到一条直线或是一个点上。
矩阵为我们提供了一种描述线性变换的语言,而矩阵向量乘法就是计算线性变换作用于给定向量的一种途径。