【matplotlib】画图基本函数 pyplot 画曲线图

本文介绍了使用matplotlib库中的pyplot模块进行曲线图绘制的基本操作,包括plot函数的使用、显示网格、调整坐标轴、设置画图参数、曲线颜色和样式、创建多子图以及图区比例划分等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from matplotlib import pyplot as plt

1.1 plot函数

# 生成1991,到2021数据作为x轴
dates = np.arange(1991,2021)
# 生成50到500的随机数,30个作为y轴 
sales = np.random.randint(50,500,size=30)
#绘制销量图:
plt.plot(dates,sales)

# 可以利用xticks函数 规定范围中X数值的显示规则,然后在进行画图
plt.xticks([1990,2005,2010,2020]) # 元素本身
plt.plot(dates,sales)

1.2 显示网格:plt.grid()

 plt.grid(True, linestyle = "--",color = "gray", linewidth = "0.5",axis = 'x')

显示网格
linestyle:线型
color:颜色
linewidth:宽度
axis:x,y,both,显示x/y/两者的格网
x = np.linspace(-np.pi,np.pi,256,endpoint = True)
c, s = np.cos(x), np.sin(x)
plt.plot(x, c)
plt.plot(x, s)
# 通过ndarry创建图表
#plt.grid(True, linestyle = "--",color = "gray", linewidth = "0.5",axis = 'both')
plt.grid(True,linestyle="--")

在这里插入图片描述

1.3 plt.gca( ) 对坐标轴的操作,修改坐标轴的位置和显示


                
### 使用 Matplotlib 绘制曲线图和散点图 以下是关于如何使用 `matplotlib.pyplot` 库来分别绘制曲线图和散点图的详细说明及示例代码。 --- #### 1. **绘制曲线图** - 曲线图通常用于展示连续变量之间的关系。 - 可以通过 `plt.plot()` 函数实现,其中参数包括横坐标 (`x`)、纵坐标 (`y`)、线条样式、颜色等[^1]。 ###### 示例代码 ```python import numpy as np import matplotlib.pyplot as plt # 定义数据 x = np.linspace(0, 6, 100) # 在区间 [0, 6] 上生成 100 个均匀分布的点 y = np.cos(2 * np.pi * x) * np.exp(-x) + 0.8 # 计算对应的 y 值 # 绘制曲线图 plt.figure(figsize=(8, 5)) # 设置布大小 plt.plot(x, y, color='blue', linewidth=2, linestyle='-', label="Decaying Cosine Wave") # 添加标签便于区分 plt.title("Curve Plot Example", fontsize=16) # 图表标题 plt.xlabel("X-axis Label", fontsize=12) # X 轴标签 plt.ylabel("Y-axis Label", fontsize=12) # Y 轴标签 plt.legend(loc="upper right") # 显示图例位置 plt.grid(True) # 显示网格 plt.show() ``` --- #### 2. **绘制散点图** - 散点图适用于表示离散数据点及其分布情况。 - 可以通过 `plt.scatter()` 函数实现,允许自定义点的颜色、大小和形状[^4]。 ###### 示例代码 ```python import numpy as np import matplotlib.pyplot as plt # 定义随机数据 np.random.seed(42) # 设定随机种子以保证结果可重复 x = np.random.rand(50) # 随机生成 50 个介于 [0, 1) 的数作为 x 坐标 y = np.random.rand(50) # 随机生成 50 个介于 [0, 1) 的数作为 y 坐标 sizes = np.random.randint(10, 200, size=50) # 点的大小范围为 [10, 200] # 绘制散点图 plt.figure(figsize=(8, 5)) plt.scatter(x, y, s=sizes, c=np.abs(x - y), cmap='viridis', alpha=0.7, edgecolors='k', marker='o') plt.colorbar(label="Color Intensity Based on |x-y|") # 添加颜色条解释 plt.title("Scatter Plot Example", fontsize=16) plt.xlabel("Random X Values", fontsize=12) plt.ylabel("Random Y Values", fontsize=12) plt.grid(True) plt.show() ``` --- ### 关键点解析 - **曲线图**: 主要依赖 `plt.plot()` 函数,适合表现连续变化的趋势。可以通过调整 `color`, `linewidth`, 和 `linestyle` 来美化图像[^1]。 - **散点图**: 利用 `plt.scatter()` 函数,支持高度定制化选项如 `s` 控制点大小,`c` 控制颜色,`marker` 控制标记形式[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值