DP最长子序列 (常规加二分)

本文介绍了两种最长子序列算法实现方式,一种是常规DP方法,时间复杂度为O(n^2),另一种是使用二分查找优化的DP方法,时间复杂度为O(n log n)。文章通过实例讲解了两种方法的具体实现过程,并对比了它们的效率。

所有的最长子序列都差不多,只是>,<,>=,<=的区别,所以要注意符号问题,之前学过常规写法,今天又看到了一个二分写法,时间复杂度前者为n*n,后者为nlogn,所以学一学还是很有必要的,挑了一道自己oj上的dp水题

传送门 : 最长不上升子序列
常规写法很简单,也当是复习了
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
using namespace std;
int dp[1005];
int a[1005];
int main()
{
    int n;
    while(scanf("%d",&n) != EOF && n)
    {
        for(int i = 1; i <= n; i ++){
            scanf("%d",&a[i]);
            dp[i] = 1;
        }
        for(int i = 2; i <= n; i ++)
            for(int j = 1; j < i; j ++)
            if(a[i] <= a[j])
            dp[i] = max(dp[i], dp[j] + 1);
        int ans = 0;
        for(int i = 1; i <= n; i ++)
            if(ans < dp[i])
            ans = dp[i];
        printf("%d\n",ans);
    }
    return 0;
}

接下来就是二分写法,有点类似于堆栈,如果有元素小于等于栈顶元素,就把该元素堆上,否则就进行“最合适的替换操作”,
一开始没太明白,手动模拟了一下就ok,然而这道题我不会用二分,尴尬不,因为这是最长不上升子序列,所以二分法需要返回序列中小于该元素的最大的元素下标,然而我不会,找了好久也没有搜到。。等我熟悉熟悉再回来

但是我会求最长上升子序列的。。。。
这道题隐藏的有些深,其实就是要求最长上升子序列长度,自己画个图很容易理解
常规写法很简单
#include<iostream>  
#include<cstring>  
#include<cstdio>  
#include<algorithm>  
#include<vector>  
#include<set>  
#include<map>  
#include<queue>  
#include<cmath>  
using namespace std;  
int num[30005];  
int dp[30005];  
int main()  
{  
    int n;  
    while(scanf("%d",&n)!=EOF)  
    {  
        for(int i = 1; i <= n; i ++)  
        {  
            scanf("%d",&num[i]);  
            dp[i] = 1;
        }  
        for(int i = 2; i <= n; i ++)  
            for(int j = 1; j < i; j ++)  
            if(num[i] > num[j])
            dp[i] = max(dp[i], dp[j] + 1);
        int ans = 0;  
        for(int i = 1; i <= n; i ++)  
            if(ans < dp[i])  
            ans = dp[i];  
        printf("%d\n",ans);  
    }  
    return 0;  
}  

二分写法:
其中二分法返回该大于元素的最小值的下标
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
using namespace std;
int dp[1005];
int a[1005];
int find_binary(int num, int k)
{
    int low = 1, high = k;
    while(low <= high)
    {
        int mid = (low + high) / 2;
        if(num >= dp[mid])
            low = mid + 1;
        else
            high = mid - 1;
    }
    return low;
}
int main()
{
    int n;
    while(scanf("%d",&n) != EOF && n)
    {
        for(int i = 1; i <= n; i ++){
            scanf("%d",&a[i]);
        }
        int len = 1;
        dp[1] = a[1];
        for(int i = 2; i <= n; i ++)
        {
            if(a[i] > dp[len])
                dp[++len] = a[i];
            else
            {
                int pos = find_binary(a[i], len);//寻找小于a[i]的最小数
                dp[pos] = a[i];
            }
        }
        printf("%d\n",len);
    }
    return 0;
}

从这里面认识到了两个新的函数

ForwardIter lower_bound(ForwardIter first, ForwardIter last,const _Tp& val)算法返回一个非递减序列[first, last)中的第一个大于等于值val的位置。

ForwardIter upper_bound(ForwardIter first, ForwardIter last, const _Tp& val)算法返回一个非递减序列[first, last)中第一个大于val的位置。
直接用lower_bound()会比手写的慢一点,但是方便

这道题如果这样写的话代码是这样的:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
using namespace std;
int dp[1005];
int a[1005];
int main()
{
    int n;
    while(scanf("%d",&n) != EOF && n)
    {
        for(int i = 1; i <= n; i ++){
            scanf("%d",&a[i]);
        }
        int len = 1;
        dp[1] = a[1];
        for(int i = 2; i <= n; i ++)
        {
            if(a[i] > dp[len])
                dp[++len] = a[i];
            else
            {
                //int pos = find_binary(a[i], len);//寻找小于a[i]的最小数
                int pos = upper_bound(dp + 1, dp + 1 + len, a[i]) - dp;
                dp[pos] = a[i];
            }
        }
        printf("%d\n",len);
    }
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值