sparkStreaming整合flume 拉模式Poll

本文介绍如何使用Spark Streaming与Flume进行数据实时处理。通过配置SparkConf参数,构建SparkContext与StreamingContext,设置checkpoint并从Flume中拉取数据,实现对实时流数据的单词计数汇总。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

object SparkStreamingFlumePoll {
  System.setProperty("hadoop.home.dir", "d://software/hadoop-2.9.2")
  //newValues 表示当前批次汇总成的(word,1)中相同单词的所有的1
  //runningCount 历史的所有相同key的value总和
  def updateFunction(newValues: Seq[Int], runningCount: Option[Int]): Option[Int] = {
    val newCount =runningCount.getOrElse(0)+newValues.sum
    Some(newCount)
  }


  def main(args: Array[String]): Unit = {
    //配置sparkConf参数
    val sparkConf = new SparkConf().setAppName("SparkStreaming_Flume_Poll").setMaster("local[2]")
    //构建sparkContext对象
    val sc = new SparkContext(sparkConf)
    sc.setLogLevel("WARN")
    //构建StreamingContext对象,每个批处理的时间间隔
    val scc = new StreamingContext(sc, Seconds(5))

    //设置checkpoint
    scc.checkpoint("./")
    //设置flume的地址,可以设置多台
    val address = Seq(new InetSocketAddress("hadoop-senior.test.com",8888))
    // 从flume中拉取数据
    val flumeStream = FlumeUtils.createPollingStream(scc,address,StorageLevel.MEMORY_AND_DISK)

    //获取flume中数据,数据存在event的body中,转化为String
    val lineStream = flumeStream.map(x=>new String(x.event.getBody.array()))
    //实现单词汇总
    val result = lineStream.flatMap(_.split(" ")).map((_,1)).updateStateByKey(updateFunction)

    result.print()
    scc.start()
    scc.awaitTermination()
  }

}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值