
西瓜书读书笔记
CrabKA
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
西瓜书读书笔记 Chapter2
2.1经验误差和过拟合 1.把分类错误的样本数占总样本数的比例称为错误率,即如果在m个样本中有a个样本分裂错误,则错误率为E=a/m,1-E称为精度 2.实际预测输出与样本的真实输出之间的差异称为误差 3.学习器在训练集上的误差称为训练误差或经验误差 4.在新样本上的误差称为泛化误差 5.学习器把训练样本学的太好了,很可能已经把训练样本自身的一些特点当作了所有潜在样本都会具有的一般性质,这样就会导致泛化性能下降,这种现象称为过拟合,相对就是欠拟合 2.2评估方法 1.对一个包含了m个样例的数据集D={(x1原创 2020-10-29 01:12:53 · 184 阅读 · 0 评论 -
西瓜书读书笔记 Chapter1
1.若分类值为连续值,则称此类任务为回归 2.二分任务: f:x->y对二分类任务,通常令y={1,0}或{-1,0} 3.对多分类任务,|y|>2,对回归任务,y=R 4.将西瓜作为聚类,对训练集中的西瓜分成若干个组,每个组成为簇。 5.根据是否拥有标记信息,学习任务可分为监督学习和无监督学习 1.3假设空间 1.归纳和演绎 2.归纳:从特殊到一般的泛化 3.演绎:从一搬到特殊的特化 4.我们把学习过程看作一个在所有假设组成的空间中进行的搜索过程 5.假设色泽根蒂敲声分别有3 3 3种取值,则原创 2020-10-28 23:23:39 · 160 阅读 · 0 评论