吴恩达MCP课程(2):research_server

代码

import arxiv
import json
import os
from typing import List
from mcp.server.fastmcp import FastMCP

PAPER_DIR = "papers"

mcp = FastMCP("research")

@mcp.tool()
def search_papers(topic: str, max_results: int = 5) -> List[str]:
    """
    Search for papers on arXiv based on a topic and store their information.
    
    Args:
        topic: The topic to search for
        max_results: Maximum number of results to retrieve (default: 5)
        
    Returns:
        List of paper IDs found in the search
    """
    
    # Use arxiv to find the papers
    client = arxiv.Client()
    
    # Search for the most relevant articles matching the queried topic
    search = arxiv.Search(
        query = topic,
        max_results = max_results,
        sort_by = arxiv.SortCriterion.Relevance
    )
    
    papers = client.results(search)
    
    # Create directory for this topic
    path = os.path.join(PAPER_DIR, topic.lower().replace(" ", "_"))
    os.makedirs(path, exist_ok=True)
    
    file_path = os.path.join(path, "papers_info.json")
    
    # Try to load existing papers info
    try:
        with open(file_path, "r") as json_file:
            papers_info = json.load(json_file)
    except (FileNotFoundError, json.JSONDecodeError):
        papers_info = {}
    
    # Process each paper and add to papers_info
    paper_ids = []
    for paper in papers:
        paper_ids.append(paper.get_short_id())
        paper_info = {
            'title': paper.title,
            'authors': [author.name for author in paper.authors],
            'summary': paper.summary,
            'pdf_url': paper.pdf_url,
            'published': str(paper.published.date())
        }
        
        papers_info[paper.get_short_id()] = paper_info
    
    # Save updated papers_info to json file
    with open(file_path, "w") as json_file:
        json.dump(papers_info, json_file, indent=2)
    
    print(f"Results are saved in: {file_path}")
    
    return paper_ids

@mcp.tool()
def extract_info(paper_id: str) -> str:
    """
    Search for information about a specific paper across all topic directories.
    
    Args:
        paper_id: The ID of the paper to look for
        
    Returns:
        JSON string with paper information if found, error message if not found
    """
    
    for item in os.listdir(PAPER_DIR):
        item_path = os.path.join(PAPER_DIR, item)
        if os.path.isdir(item_path):
            file_path = os.path.join(item_path, "papers_info.json")
            if os.path.isfile(file_path):
                try:
                    with open(file_path, "r") as json_file:
                        papers_info = json.load(json_file)
                        if paper_id in papers_info:
                            return json.dumps(papers_info[paper_id], indent=2)
                except (FileNotFoundError, json.JSONDecodeError) as e:
                    print(f"Error reading {file_path}: {str(e)}")
                    continue
    
    return f"There's no saved information related to paper {paper_id}."


if __name__ == "__main__":
    mcp.run(transport="stdio")


代码解释

导入模块

import arxiv        # 用于访问arXiv API搜索论文
import json         # 处理JSON数据
import os           # 操作系统功能,如文件路径处理
from typing import List  # 类型提示
from mcp.server.fastmcp import FastMCP  # 导入MCP框架

常量定义

PAPER_DIR = "papers"  # 定义存储论文信息的目录

MCP服务器初始化

mcp = FastMCP("research")  # 创建一个名为"research"的MCP服务器实例

工具函数定义

1. search_papers 函数
@mcp.tool()
def search_papers(topic: str, max_results: int = 5) -> List[str]:

这个函数被注册为MCP工具,用于在arXiv上搜索特定主题的论文并保存信息:

  • 装饰器@mcp.tool() 将此函数注册为MCP服务的工具
  • 参数
    • topic: 要搜索的主题
    • max_results: 最大结果数量(默认5个)
  • 返回值:找到的论文ID列表

功能流程

  1. 创建arXiv客户端
  2. 按相关性搜索主题相关论文
  3. 为该主题创建目录(如papers/machine_learning
  4. 尝试加载已有的论文信息(如果存在)
  5. 处理每篇论文,提取标题、作者、摘要等信息
  6. 将论文信息保存到JSON文件中
  7. 返回论文ID列表
2. extract_info 函数
@mcp.tool()
def extract_info(paper_id: str) -> str:

这个函数也被注册为MCP工具,用于在所有主题目录中搜索特定论文的信息:

  • 装饰器@mcp.tool() 将此函数注册为MCP服务的工具
  • 参数paper_id - 要查找的论文ID
  • 返回值:包含论文信息的JSON字符串(如果找到),否则返回错误信息

功能流程

  1. 遍历papers目录下的所有子目录
  2. 在每个子目录中查找papers_info.json文件
  3. 如果找到文件,检查是否包含指定的论文ID
  4. 如果找到论文信息,返回格式化的JSON字符串
  5. 如果未找到,返回未找到的提示信息

主程序

if __name__ == "__main__":
    mcp.run(transport="stdio")

总结

research_server.py是一个基于MCP框架的研究服务器,提供了两个主要工具:

  1. 搜索arXiv上的论文并保存信息
  2. 提取已保存的论文信息

这个服务器可以作为AI助手的后端,通过MCP协议与前端交互,提供论文研究相关的功能。

运行示例

可用inspector工具查看,可以参照这个例子MarkItDown-MCP 测试与debug

请添加图片描述
请添加图片描述

前一节链接:
吴恩达MCP课程(1):chat_bot

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值