关于Class继承nn.Module和nn.Sequential的区别

这篇博客探讨了在PyTorch中实现3x3卷积层的不同方法,包括直接在`nn.Sequential`中定义、在`nn.Sequential`内创建子模块以及使用`nn.Module`并重写`forward`函数。作者指出,虽然三种方式都能正常运行,但是否需要重写`forward`函数可能是它们之间的一个主要区别。内容详细展示了每种实现的代码结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不是很清楚这两个有什么区别,最近写shufflenet时候试着写了一下
发现三种写法,都是可以正常运行的,在Sequential中他写了相应的forward函数,我们如果不需要重写的话,就可以只写相应的层,不去重写对应的forward函数,感觉这可能是他的一个区别?

下面的三种写法

class conv3x3(nn.Sequential):
    def __init__(self, in_channel, stride, bias=False):
        super(conv3x3, self).__init__(

            nn.Conv2d(in_channels=in_channel, out_channels=in_channel,
                      kernel_size=3, stride=stride, padding=1, groups=in_channel, bias=bias),
            nn.BatchNorm2d(in_channel)
        )

class conv3x3(nn.Sequential):
    def __init__(self, in_channel, stride, bias=False):
        super(conv3x3, self).__init__()
        self.conv3x3 = nn.Sequential(
            nn.Conv2d(in_channels=in_channel, out_channels=in_channel,
                      kernel_size=3, stride=stride, padding=1, groups=in_channel, bias=bias),
            nn.BatchNorm2d(in_channel)
        )

class conv3x3(nn.Module):
    # 3x3卷积中的输入通道和输出通道一致,且使用dw卷积,也就是group=channel,都不使用Relu,stride有两种取值,2只在每个stage的第一个block

    def __init__(self, in_channel, stride, bias=False):
        super(conv3x3, self).__init__()
        self.conv3x3 = nn.Sequential(
            nn.Conv2d(in_channels=in_channel, out_channels=in_channel,
                      kernel_size=3, stride=stride, padding=1, groups=in_channel, bias=bias),
            nn.BatchNorm2d(in_channel)
        )

    def forward(self, x):
        return self.conv3x3(x)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值