msfvenom常规编码器(encoder)免杀

本文介绍了使用msfvenom创建shellcode并结合多种编码器进行免杀尝试,包括x86/shikata_ga_nai、x86/fnstenv_mov和x86/countdown等,以及利用UPX进行加壳以减少文件大小。然而,实验结果显示,这些方法无法绕过360等国内杀毒软件的检测,同时在靶机上执行失败,可能由于编码次数过多导致文件损坏。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 实验环境

       攻击机:kali                  IP:192.168.3.150

       靶机:windows7 x64    IP:192.168.3.176

 

1. 编码器选项

root@afei:~# msfvenom --list encoders #列出可用的编码器



Framework Encoders [--encoder <value>]

======================================



Name Rank Description

---- ---- -----------

cmd/brace low Bash Brace Expansion Command Encoder

cmd/echo good Echo Command Encoder

cmd/generic_sh manual Generic Shell Variable Substitution Command Encoder

cmd/ifs low Bourne ${IFS} Substitution Command Encoder

cmd/perl normal Perl Command Encoder

c
### 编码器的功能与实现方式 #### 编码器的基础概念 编码器的核心功能在于将输入的数据转换为另一种形式以便于后续处理。这种转换可以是为了压缩数据、提取特征或者便于通信和存储[^1]。 #### 自编码器中的编码器 在自编码器(Auto-encoder, AE)中,编码器的作用是将输入数据映射到一个低维的潜在空间表征。这一过程通过编码函数 \( h = f(x) \) 来完成,其中 \( x \) 是输入数据,\( h \) 是潜在空间表征。该阶段的主要目标是对输入数据进行降维并保留其重要特征[^2]。 以下是基于 PyTorch 的简单自编码器编码部分的实现: ```python import torch.nn as nn class Encoder(nn.Module): def __init__(self, input_dim, hidden_dim, latent_dim): super(Encoder, self).__init__() self.fc1 = nn.Linear(input_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, latent_dim) def forward(self, x): x = torch.relu(self.fc1(x)) z = self.fc2(x) return z ``` 上述代码定义了一个简单的全连接型编码器结构,用于将高维输入数据逐步压缩至低维潜在空间。 #### Transformer 架构中的编码器 在 Transformer 中,编码器由多个堆叠层构成,每一层包含以下几个主要模块: 1. **自注意力机制 (Self-Attention)**:允许模型关注输入序列的不同位置,从而捕获全局依赖关系。 2. **多头注意力机制 (Multi-head Attention)**:扩展了单一注意力机制的能力,使其可以从不同子空间学习信息。 3. **前馈神经网络 (Feed Forward Neural Network)**:进一步对数据进行非线性变换。 4. **残差连接 (Residual Connection)** 和 **归一化 (Normalization)**:提升训练稳定性并加速收敛。 每经过一层编码器,输入序列的信息会被更深层次地加工和提炼,最终形成上下文敏感的表示向量[^4]。 以下是一个简化版的单层 Transformer 编码器实现: ```python import torch import torch.nn as nn class TransformerEncoderLayer(nn.Module): def __init__(self, d_model, num_heads, dim_feedforward, dropout=0.1): super(TransformerEncoderLayer, self).__init__() self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) def forward(self, src): attn_output, _ = self.self_attn(src, src, src) src = src + self.dropout(attn_output) src = self.norm1(src) ff_output = self.linear2(self.dropout(torch.relu(self.linear1(src)))) src = src + self.dropout(ff_output) src = self.norm2(src) return src ``` 此代码片段展示了如何构建一个标准的 Transformer 编码器层,适用于自然语言处理任务中的序列建模。 #### 上下文补全中的编码器应用 Context Encoders 是一种特定类型的卷积自编码器,主要用于图像修复任务。它的编码器负责捕捉损坏区域周围的上下文信息,并将其传递给解码器以重建缺失的部分[^3]。 以下是 Context Encoders 项目的链接供深入研究:[context_encoder_pytorch](https://gitcode.com/gh_mirrors/co/context_encoder_pytorch)。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

afei00123

您的支持是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值