支持向量机怎么用

本文深入解析了支持向量机(SVM)这一二分类模型的原理与应用。介绍了SVM通过寻找最大间隔超平面来分割数据集,将分类问题转化为凸二次规划问题求解的过程。并详细演示了使用SVM进行数据分类的具体步骤,包括数据预处理、模型训练、准确率评估及结果可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SVM支持向量机

一、简介

支持向量机(support vector machines)是一种二分类模型,它的目的是寻找一个超平面来对样本进行分割,分割的原则是间隔最大化,最终转化为一个凸二次规划问题来求解。

二、实例应用:使用支持向量机SVM

准备:    

    数据集

    导入SVM模块

步骤:

    1.读取数据集

    2.划分训练样本与测试样本

    3.训练SVM分类器
    4.计算分类准确率

    5.绘制图像
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值