利用sklearn KNN实现手写数字识别

# 利用sklearn KNN实现手写数字识别


import numpy as np

import pandas as pd

from PIL import Image

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import train_test_split,GridSearchCV



def imgTovector(filename):

    img=plt.imread(filename)

    img_data=np.array(img)

#    Minmax=MinMaxScaler()

#    img_union=Minmax.fit_transform(img_data)

    img_vector=img_data.reshape(1,-1)

    return img_vector



from os import listdir

def collectFiledataset():

    img_labels = list()

    # 样本数据文件列表

    FileList = listdir('knn_num_data')

    f = len(FileList)

    # 设置初始矩阵

    c = 28 * 28

    dataSet = np.zeros((5000, c))

    for i in range(f):

        path = 'knn_num_data/' + FileList[i]

        trainingFilelist = listdir(path)

        t = len(trainingFilelist)

        for j in range(t):

            fileNameStr = trainingFilelist[j]

            fileStr = fileNam
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值