利用GEE做监督分类,以武汉市为例。
训练器我们选择随机森林;数据选择Landsat-8;训练样本使用的是GEE提供的一种,它把地表分为三类:水体、植被和城市用地。
- 选择训练样本
用要素集来标记训练样本。每个要素都有一个landcover 的属性,0表示城市用地,1表示植被,2表示水体。
- 对影像进行分类
其中一部分进行分类器的训练,还有一部分留下来做精度验证。
- 输出影像及混淆矩阵
print(LABEL_DATA);
var wuhan = ee.FeatureCollection('users/goodmalest/wuhan')
//选择的训练样本
function maskL8sr(image) {//去云
var cloudShadowBitMask = (1 << 3);
var cloudsBitMask = (1 << 5);
var qa = image.select('pixel_qa');
var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0)
.and(qa.bitwiseAnd(cloudsBitMask).eq(0));
return image.updateMask(mask);
}
var landsatImage = ee.ImageCollection("LANDSAT/LC08/C01/T1_SR")
.filterDate('2019-01-01', '2019-12-31')
.map(maskL8sr)
.mean();
// 使用下列波段作为特征
var bands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7'];
// 通过要素集在Landsat-8中选取样本,把landcover属性赋予样本
var training = landsa