GEE——土地利用分类之监督分类

利用GEE做监督分类,以武汉市为例。

训练器我们选择随机森林;数据选择Landsat-8;训练样本使用的是GEE提供的一种,它把地表分为三类:水体、植被和城市用地。

  • 选择训练样本

用要素集来标记训练样本。每个要素都有一个landcover 的属性,0表示城市用地,1表示植被,2表示水体。

  • 对影像进行分类

其中一部分进行分类器的训练,还有一部分留下来做精度验证。

  • 输出影像及混淆矩阵
print(LABEL_DATA);
var wuhan = ee.FeatureCollection('users/goodmalest/wuhan')

//选择的训练样本
function maskL8sr(image) {//去云
  var cloudShadowBitMask = (1 << 3);
  var cloudsBitMask = (1 << 5);
  var qa = image.select('pixel_qa');
  var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0)
                .and(qa.bitwiseAnd(cloudsBitMask).eq(0));
  return image.updateMask(mask);
}
var landsatImage = ee.ImageCollection("LANDSAT/LC08/C01/T1_SR")
    .filterDate('2019-01-01', '2019-12-31')
    .map(maskL8sr)
    .mean();
// 使用下列波段作为特征
var bands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7'];

// 通过要素集在Landsat-8中选取样本,把landcover属性赋予样本
var training = landsa
### 使用Google Earth Engine (GEE) 进行多年土地利用分类 为了实现多年土地利用分类,可以采用 ESRI_Global-LULC_10m 数据集来获取高分辨率的土地覆盖信息。该数据集提供了详细的全球土地利用/土地覆盖分类,包括但不限于农田、森林、草地和城市地区等类别[^1]。 下面是一个Python脚本示例,展示如何加载并处理这些数据: ```python import ee ee.Initialize() # 定义研究区域 aoi = ee.Geometry.Polygon( [[[78.96, 27.17], [78.96, 27.05], [79.15, 27.05], [79.15, 27.17]]]) # 加载ESRI Global LULC数据集 lulc = ee.ImageCollection('projects/sat-io/open-datasets/landcover_ESRI') # 获取特定年份的数据 yearly_lulc = lulc.filterDate('2020-01-01', '2020-12-31').first().clip(aoi) # 显示图像 Map.addLayer(yearly_lulc.randomVisualizer(), {}, "Land Cover Classification") # 打印元数据查看可用波段和其他属性 print(yearly_lulc.bandNames().getInfo()) ``` 这段代码展示了如何通过过滤日期范围获得某一年的具体土地利用情况,并将其裁剪到感兴趣的研究区域内显示出来。对于多年度的时间序列分析,则可以通过循环遍历所需年份列表,分别提取每一年的数据来进行对比分析。 此外,在进行长期趋势分析时,还可以借鉴关于北运河流域水体面积变化的研究方法,即针对不同时间段内的水域变化情况进行探讨,这有助于理解整个流域内水面空间分布随时间演变的趋势[^2]。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

月球上看星星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值