数值计算(七)——数值积分与数值积分(一)

本文介绍了数值积分的基本概念,包括Newton-Leibniz公式的作用限制及数值近似方法的重要性。详细探讨了代数精度的概念,并通过梯形公式和Simpson公式等实例展示了数值积分的具体应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在高数中我们知道Newton−Leibniz公式Newton-Leibniz公式NewtonLeibniz ∫axf(t)dt=F(x)−F(a)\mathop{ \int }\nolimits_{{a}}^{{x}}f{ \left( {t} \right) } \text{d} t=F(x)-F(a)axf(t)dt=F(x)F(a),表面上感觉所有的积分任务都可以被解决了,但实际应用中却是令人失望的,往往原函数没法直接求出,甚至是没有简单的原函数表达。由于这种情况的存在,因此必须考虑一种定积分计算的近似方法,数值方法是一种重要的近似求定积分的方法。一般来说,找出fff的一个近似函数φ\varphiφ,而且φ\varphiφ的定积分比较容易求得,比如φ\varphiφ是多项式,由此有∫abf(x)dx≈∫abφ(x)dx\int \nolimits_{a}^bf(x)dx\approx\int\nolimits_{a}^b\varphi(x)dxabf(x)dxabφ(x)dx,便可以简单求出对应的原函数。

代数精度

讨论定积分∫abρ(x)f(x)dx\int\nolimits_{a}^b\rho(x)f(x)dxabρ(x)f(x)dx数值计算,其中[a,b][a,b][a,b]为求积区间,它可以是有限的,也可以是无限的,ρ\rhoρ为定义在[a,b][a,b][a,b]上的权函数,fff为给定的函数(被积函数)。一般求积公式具有如下形式:
∫abρ(x)f(x)dx≈∑k=0nAkf(xk)\qquad\qquad\qquad\qquad\qquad\int\nolimits_{a}^b\rho(x)f(x)dx\approx\sum\limits_{k=0}^nA_kf(x_k)abρ(x)f(x)dxk=0nAkf(xk)
其中xkx_kxk称为求积公式的节点(或称求积节点),AkA_kAk称为求积系数,一般要求xk,k=0,1,2,...,nx_k,k=0,1,2,...,nxk,k=0,1,2,...,n均属于[a,b][a,b][a,b].其中En(f)=∫abρ(x)f(x)dx−∑k=0nAkf(xk)E_n(f)=\int\nolimits_{a}^b\rho(x)f(x)dx-\sum\limits_{k=0}^nA_kf(x_k)En(f)=abρ(x)f(x)dxk=0nAkf(xk)求求积公式的误差。
代数精度定义:

如果En(xm)=0,m=0,1,2...kE_n(x^m)=0,m=0,1,2...kEn(xm)=0,m=0,1,2...k则称求积公式至少具有kkk次代数精度,如果还有En(xk+1)≠0E_n(x^{k+1})\neq0En(xk+1)=0则称求积公式的代数精度恰好为k。

来上题目搞一下子:
在这里插入图片描述

插值型求积公式

在这里插入图片描述
在这里插入图片描述

定理2:积分系数全为正的插值型求积公式∫abf(x)dx≈∑i=0nAif(xi)\int\nolimits_{a}^bf(x)dx\approx\sum\limits_{i=0}^nA_if(x_i)abf(x)dxi=0nAif(xi)必然是稳定的。

Newton-Cotes公式

梯形公式和SimpsonSimpsonSimpson公式

计算定积分I(f)=∫abf(x)dxI(f)=\int\nolimits_{a}^bf(x)dxI(f)=abf(x)dx最简单的方法就是在[a,b][a,b][a,b]上用线性插值多项式L1来代替被积函数fff,设插值节点x0=a,x1=bx_0=a,x_1=bx0=a,x1=b那么L1(x)=x−ba−bf(a)+x−ab−af(b)L_1(x)=\frac{x-b}{a-b}f(a)+\frac{x-a}{b-a}f(b)L1(x)=abxbf(a)+baxaf(b),I(f)≈I1(f)=∫abL1(x)dx=b−a2[f(a)+f(b)]I(f)\approx I_1(f)=\int\nolimits_a^bL_1(x)dx=\frac{b-a}{2}[f(a)+f(b)]I(f)I1(f)=abL1(x)dx=2ba[f(a)+f(b)]这个被称为梯形求积公式

积分第一中值定理设函数f,g在[a,b]上连续,且g(x)在[a,b]上不变号,则有存在ξ∈[a,b]使得:设函数f,g在[a,b]上连续,且g(x)在[a,b]上不变号,则有存在\xi\in[a,b]使得:f,g[a,b]g(x)[a,b]ξ[a,b]使:∫abf(x)g(x)dx=f(ξ)∫abg(x)dx\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\int\nolimits_a^bf(x)g(x)dx=f(\xi)\int\nolimits_{a}^bg(x)dxabf(x)g(x)dx=f(ξ)abg(x)dx

梯形求积公式误差:设f∈C2[a,b]f\in C^2[a,b]fC2[a,b],那么梯形求积公式的误差:
E1(f)=∫abf(x)dx−b−a2[f(a)+f(b)]=−(b−a)312f′′(η),η∈[a,b]\qquad\qquad\qquad\qquad E_1(f)=\int\nolimits_a^bf(x)dx-\frac{b-a}{2}[f(a)+f(b)]=-\large\frac{(b-a)^3}{12}f''(\eta) ,\eta\in[a,b]E1(f)=abf(x)dx2ba[f(a)+f(b)]=12(ba)3f(η),η[a,b]

不妨使用梯形公式计算一下定积分I=∫0111+xdxI=\large \int\nolimits_0^1\Large\frac{1}{1+x}\large dxI=011+x1dx的近似值:

解:使用梯形公式有:I1(f)=12(1+12)=34I_1(f)=\frac{1}{2}(1+\frac{1}{2})=\frac{3}{4}I1(f)=21(1+21)=43,误差为:ln2−0.75≈−0.056833ln2-0.75\approx-0.056833ln20.750.056833

Simpson公式∫abf(x)dx≈b−a6[f(a)+4f(a+b2)+f(b)]\int\nolimits_a^bf(x)dx\approx \frac{b-a}{6}[f(a)+4f(\frac{a+b}{2})+f(b)]abf(x)dx6ba[f(a)+4f(2a+b)+f(b)]

Newton−Cotes求积公式Newton-Cotes求积公式NewtonCotes

在这里插入图片描述
在这里插入图片描述
不难发现,当n=1n=1n=1,n=2n=2n=2对应的就是梯形求积公式和辛普森求积公式。
其对应的一些性质
在这里插入图片描述

牛顿-柯特斯公式代数精度

nnnNewton−CotesNewton-CotesNewtonCotes公式至少有n次代数精度,当nnn为偶数时,Newton−CotesNewton-CotesNewtonCotes公式至少有n+1n+1n+1次代数精度。
在这里插入图片描述
实战使用就大家自己练习咯!!!

欢乐的时光总是短暂的,让我们下一次再见!!!
good good study,day day up! (study hard, improve every day)
预知后事,请听下回分解!!!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值