主要内容
- 对称矩阵
正文
对称矩阵
我们研究一个矩阵,通常就是研究这个矩阵的特征值和特征向量,矩阵的特殊性会在特征值和特征向量上体现出来,这是很重要的一种方法。对于对称矩阵AAA,根据定义有这样的描述A=ATA=A^TA=AT。首先我们有这样的事实:
- 特征值是实数
- 能够选择出一组相互垂直的特征向量。如果特征值不是重复的话,那么特征向量都是相互垂直的。
这是经过严格证明的,这里不做具体的证明,证明细节参考其他资料。不过我们可以给出一个特殊的例子,那就是单位矩阵,单位矩阵是一个对称矩阵,它有重复的特征值,但是他的特征向量都是相互垂直的。
通常的,我们有A=SΛS−1A=S\Lambda S^{-1}A=SΛS−1。在对称矩阵中,特征向量都是相互垂直的,所以特征矩阵SSS是一个正交矩阵,可以记为QQQ,因此我们又有下面的公式:A=QΛQ−1=QΛQTA=Q\Lambda Q^{-1}=Q\Lambda Q^TA=QΛQ−1=QΛQT这个公式在数学中叫做谱定理,所谓谱就是矩阵的特征值集合,意味着矩阵是一些纯元素的组合。这种将矩阵分解成特征值和特征向量在力学上常称之为主轴定理。
现在我们考虑为什么特征值是实数。对于实矩阵AAA,首先有这样的事实Ax=λx⇒Axˉ=λˉxˉAx=\lambda x\quad\Rightarrow\quad A\bar{x}=\bar{\lambda} \bar{x}Ax=λx⇒Axˉ=λˉxˉ,将它转置之后得到xˉTAT=xˉTλˉ\bar{x}^TA^T=\bar{x}^T\bar{\lambda}xˉTAT=xˉTλˉ,将Ax=λxAx=\lambda xAx=λx左乘xˉT\bar{x}^TxˉT,将xˉTAT=xˉTλˉ\bar{x}^TA^T=\bar{x}^T\bar{\lambda}xˉTAT=xˉTλˉ右乘xxx得到:xˉTAx=xˉTλxxˉTATx=xˉTλˉx\bar{x}^TAx=\bar{x}^T\lambda x\qquad \bar{x}^TA^Tx=\bar{x}^T\bar{\lambda}xxˉTAx=xˉTλxxˉTATx=xˉTλˉx hasA=AThas\quad A=A^ThasA=AT we getxˉTλx=xˉTλˉx⇒λˉxˉTx=λxˉTxwe\ get\quad \bar{x}^T\lambda x=\bar{x}^T\bar{\lambda}x\quad\Rightarrow\quad \bar{\lambda}\bar{x}^Tx=\lambda\bar{x}^Txwe getxˉTλx=xˉTλˉx⇒λˉxˉTx=λxˉTxxˉTx\bar{x}^TxxˉTx表示特征向量的长度,它不为零,于是我们有λˉ=λ\bar{\lambda}=\lambdaλˉ=λ,这里λ\lambdaλ只能是实数。在这个证明过程中主要使用了A=ATA=A^TA=AT这一对称矩阵的特性。如果AAA为复矩阵,那么会有这样的特性A=AˉTA=\bar{A}^TA=AˉT,结合这个特性一样可以证明特征值为实数,由于复矩阵出现的非常少,这里就省略了证明。
我们再次将A=QΛQTA=Q\Lambda Q^TA=QΛQT展开:[q1q2...qn][λ1λ2...λn][q1Tq2T:qnT]=λ1q1q1T+λ2q2q2T+...+λnqnqnT\begin{bmatrix}q_1&q_2&...&q_n\end{bmatrix}\begin{bmatrix}\lambda_1\\&\lambda_2\\&&...\\&&&\lambda_n\end{bmatrix}\begin{bmatrix}q_1^T\\q_2^T\\:\\q_n^T\end{bmatrix}=\lambda_1q_1q_1^T+\lambda_2q_2q_2^T+...+\lambda_nq_nq_n^T[q1q2...qn]⎣⎢⎢⎡λ1λ2...λn⎦⎥⎥⎤⎣⎢⎢⎡q1Tq2T:qnT⎦⎥⎥⎤=λ1q1q1T+λ2q2q2T+...+λnqnqnT在投影矩阵的时候我们就见过这种形式qnqnTq_nq_n^TqnqnT,这是一个投影矩阵,它是对称的。从这个展开式上来看,每一个对称矩阵都是相互垂直的投影矩阵的组合。
行列式计算特征值的方式在低阶是不错的,当阶数为4的时候就有些困难了,更高阶的时候会更加的困难。不过对于对称矩阵而言,它提供了一些线索,对称矩阵的主元的符合与特征值的符号是一致的。此外, 主元的乘积等于行列式等于特征值的乘积。
正定矩阵
正定矩阵是对称矩阵的一个子类,它首先是对称矩阵,其次是正定矩阵。所谓正定就是指矩阵的特征值都是正的。因此所有的主元都是正的,这对微分方程比较重要,因为通过特征值的符号(对于对称矩阵还可以通过主元的符号)来判断微分方程是否稳定。所有的主元都是正的,从而造成了所有的子行列式(nnn个)都是正的。
这一节的重点在于将前后讲的所有内容融合到了一起,当然不仅仅限于对称矩阵。