- 博客(4)
- 收藏
- 关注
原创 WinoGrad算法
WinoGrad算法WinoGrad论文计算背景-卷积计算方法 首先明确一点,这里说的卷积计算是指深度学习卷积网络(ConvNet)的计算方式,而不是高数中的卷积计算。目前常见的计算卷积的方式主要有以下集中方法:滑动窗口:这种方法就是基本的计算方式,但是计算比较慢,因此一般不采用这种方法。im2col:目前几乎所有的主流计算框架包括 Caffe, MXNet 等都实现了该方法。该方法把整个卷积过程转化成了 GEMM 过程,而 GEMM 在各种 BLAS 库中都是被极致优化的,一般来说,速度较快
2021-05-08 17:27:33
1928
原创 Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2
Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2ABSTRACT1 介绍2 背景2.1 YOLOv2算法2.2 ABM-SpConv算法3 系统设计3.1 目标异构平台3.2 HW/SW划分3.3 硬件结构设计3.3.1 DATA LOAD/STORE UNITS3.3.2 SPARSE CONVOLUTION UNIT3.3.3 ON-CHIP BUFFER DESIGN3.3.4 HARDWARE MAX
2021-04-27 16:20:32
1352
1
原创 A Novel FPGA Accelerator Design for Real-Time and Ultra-Low Power Deep Convolutional Neural Networks
A Novel FPGA Accelerator Design for Real-Time and Ultra-Low Power Deep Convolutional Neural Networks Compared With Titan X GPUAbstart1.Introduction2.Background2.1 Related Work2.2 FPGA实现方法2.3 CNN_FPGA3.基于FPGA的CNN加速并行、流水线建模3.1 三维卷积运算的高速并行设计3.2 CNN加速的并行、流水线设计
2021-04-26 12:14:32
545
原创 MNIST在CPU、FPGA、ARM上的运行对比
MNIST在CPU、FPGA、ARM上的运行对比CPU与FPGA对比 CPU FPGACPU上进行MNIST推断 环境配置 实验代码 实验结果FPGA上进行MNIST推断 环境配置 实验代码 实验结果CPU与FPGA对比 CPU CPU是通用处理器,串行的执行指令。 CPU、GPU 都属于冯·诺依曼结构,指令译码执行、共享内存。冯氏结构中,由于执行单元(如 CPU 核)可能执行任意指令,就需要有指令存储器、译码器、各种指令的运算器、分支跳转处理逻辑。由于指令流的控制逻辑复杂,
2021-04-25 10:35:21
692
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人