DynaSLAM-1 从ORB-SLAM2到DynaSLAM的编译 v1.0版本

目录

0.1 对动态场景的跟踪

一、准备工作

1.1环境准备

二、ORB-SLAM2的编译

2.1 安装高版本的CMake

2.2 安装Eigen 

2.3 安装Pangolin0.5版本(版本一定要选这个 0.6编译ORBSLAM2会拉闸) 

2.3.1 依赖安装

2.3.2 下载 Pangolin0.5版本

2.3.3 安装

2.4 安装opencv 2.4.11 

2.4.1 安装依赖

2.4.2 安装opencv ---Configuration Debug

到opencv的根目录执行如下代码:会出现下列错误

2.4.3 安装opencv ---Configuration Debug1

2.4.4 安装opencv ---Make Debug

2.4.5  安装opencv ---Make Debug

2.4.6  安装opencv ---Make Debug

2.4.7 安装opencv到系统 

2.4.8 配置opencv 

2.5 编译ORB-SLAM2 

2.5.0 下载ORB-SLAM2源码命令

2.5.1 给予build.sh可执行权限

2.5.2 Dubug (error: ‘usleep’ was not declared in this scope)

2.5.3 重新编译,第一阶段完结撒花 

三、DynaSLAM的编译

3.1 下载DynaSLAM包

3.2 下载coco数据集 

3.3 下载mask_rcnn_coco.h5 

3.4 下载tensorflow1.12.3压缩包

在这个链接下载 

3.5 下载pip(python2.x) 

3.6 安装tensorflow

3.7 安装与tensorflow1.12.3对应版本的Keras2.0.9 

3.8 安装必备包 

3.9 用Anaconda配置Python相关的环境

3.9.1 下载Anaconda安装包

3.9.2 安装 Anaconda

3.9.3 用Anaconda配置Python相关的环境 

3.9.4 在conda外面做的一些操作 

3.10 编译DynaSLAM

3.10.1 注释掉DynaSLAM根目录的carla行

3.10.2 注释掉根目录、g2o库、DBow2库的-match native去掉 

3.10.3 编译Dynaslam

四、运行ORB-SLAM2与DynaSLAM

4.1 运行ORB-SLAM2

4.1.1 下载数据集

数据集点我下载

4.1.2 数据集处理

4.1.3 运行脚本关联RGB 图像和深度图像 

4.1.4 运行查看结果 

4.2 运行DynaSLAM

4.2.1 下载数据集

4.2.2 数据集处理  

4.2.3 运行查看结果

 


0.1 对动态场景的跟踪

一、准备工作

1.1环境准备

一、装好的VMWare虚拟机  /  双系统:如果不会装双系统,请参阅我这篇博客:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

APS2023

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值