Ubuntu环境下实现Yolo,CPU+GPU

本文详述了在Ubuntu 19.10系统中配置YOLO的全过程,包括硬件环境(CPU:I5,GPU:NVIDIA 1050)、Ubuntu双系统安装、更换软件源、安装OpenCV 3.2.0、CUDA+CUDNN 10.1以及解决各种安装问题。最后强调,安装完CUDA或OpenCV后需要重新编译Darknet项目才能在GPU上运行YOLO。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

经过将近一周的折腾终于搞定YOLO的环境配置,分享下一点经验心得。 

1. 硬件:

CPU:I5

GPU:NVIDIA 1050

初始系统Win10。

 

2. 环境配置:

Ubuntu 19.1

由于YOLO框架 Darknet是基于CUDA,C++,最直接和方便的方式还是使用Linux系统来实现。(原作者也在官网声明了只在LInux和Mac系统中测试过)。

最开始曾经看过一篇blog介绍了在win系统下通过虚拟系统Msys2来搭建Darknet框架并通过CPU实现Yolo,很有参考价值:https://blog.csdn.net/weixin_42754237/article/details/86619721

首先安装双系统 Ubuntu 19.04, 直接从Ubuntu官网下载最新版本的ISO文件,并做好U盘启动。然后在Win系统下划分硬盘空间,通过BIOS切换到U盘启动开始安装Ubuntu。(详细步骤可参考网上各种双系统教程)

坑点:有的电脑型号中BIOS没有优先U盘启动选项,插入3.0的U盘就才能显示这项。

           Ubuntu系统划分的时候,usr要么别分配空间(会默认使用home的空间),要么至少分配20G以上。第一次安装的时候我只分配了10G,结果更chang新shi了一大堆安装配置后,在安装opencv的时候竟然空间不够了,只好重装系统。。。

安装完Ubuntu后记得第一时间进入软件和更新更换最佳源,可以为后面的安装节省不少时间。

 

Opencv 3.2.0

安装Opencv折腾的最多,尝试遍了在windows系统中的安装和配置,python下的安装和配置以及Ubuntu下的安装和配置。

前两者网上都有比较靠谱的攻略,U

### Ubuntu 上安装和配置 YOLO 环境 #### 准备工作 为了确保顺利安装,在开始之前确认系统已更新至最新状态并安装必要的依赖包。 ```bash sudo apt update && sudo apt upgrade -y sudo apt install git wget build-essential libgl1-mesa-glx -y ``` #### Anaconda 安装 对于稳定管理和隔离不同项目所需的 Python 版本及其库,推荐使用 Anaconda 或 Miniconda 来管理环境。Anaconda 是一个开源的数据科学平台,包含了 Conda 这个强大的包管理系统[^1]。 下载适合系统的 Anaconda 或者更轻量级的 Miniconda 并按照官方说明完成安装过程。完成后可以通过命令 `conda -V` 和 `python -V` 查看是否成功安装以及对应的版本号[^2]。 #### 创建虚拟环境 创建专门用于 YOLO 的新环境可以防止与其他项目的冲突,并保持开发环境整洁有序。这里指定 Python 3.8 作为目标解释器版本: ```bash conda create -n yolo5 python=3.8 ``` 激活新建的环境以便后续操作都在此环境中执行: ```bash conda activate yolo5 ``` #### 安装 PyTorch 及其他依赖项 考虑到不同的硬件支持情况(CPU/GPU),选择合适的 PyTorch 安装方式非常重要。如果计划利用 NVIDIA GPU 加速模型训练,则需先确认 CUDA 已正确设置好。假设已经具备 CUDA 11.x 支持的情况下,可通过如下指令来安装兼容版本的 PyTorch: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 除此之外,还需根据具体需求安装额外的一些 Python 库文件,比如 NumPy, Matplotlib 等常用工具;这些通常可以直接通过 pip 或 conda 命令获取。 #### 获取 YOLO 源码 从 GitHub 克隆仓库到本地机器上,这样可以获得最新的源代码及预训练权重文件。以 Mamba-YOLO 为例: ```bash git clone https://github.com/HZAI-ZJNU/Mamba-YOLO.git cd Mamba-YOLO/ ``` 进入克隆下来的目录后,依据 README.md 中给出的具体指导进一步调整配置参数或运行脚本来初始化项目结构[^3]。 #### 测试验证 最后一步是对整个流程做一个简单的检验——尝试加载预训练好的检测网络并对一张图片做推理预测。这不仅能够帮助理解 API 使用方法,也能及时发现潜在的问题所在。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值