基于VMD变分模态分解算法Python程序

VMD是一种时频分析方法,用于非线性非平稳信号分解。它无需滑动窗口或基础函数选择,且在噪声去除和时频局部性质上优于其他算法。文章提供了Python代码示例,从Excel文件读取数据并应用VMD进行信号处理。

基于VMD变分模态分解算法Python程序

可用于时间序列和其他领域

特色:1、基于Python

           2、数据从excel文件中读取,更换简单

全部完整的代码,保证可以运行的代码看这里。

全部的,完整的代码在这里!!!

  !!!如果第一个链接打不开,请点击个人首页,查看我的个人介绍。

(搜索到的产品后,点头像,就能看到全部代码)

黑科技小土豆的博客_CSDN博客-深度学习,32单片机领域博主

348e9da7de3e4074a1087315b560b24b.png

3c0e3a78aaf909556f5546503f18f381.png

1、VMD变分模态分解算法背景简介

VMD全称是Variational Mode Decomposition,是一种新型的时频分析算法,可用于对非线性非平稳信号进行分解和分析,如音频、视频、地震信号等领域。

该算法的工作机制是通过数学优化的方式将信号分解成各个模态分量和一个高频噪声分量。这些模态分量贡献了不同的频带和幅度信息,从而可以更好地揭示信号的特征。

与其他时频分析算法相比,VMD算法具有以下优点:

  • 与经验模态分解(EMD)算法不同,VMD不需要滑动窗口技术,也不受到基础函数选取的影响;
  • 与小波变换算法不同,VMD不受到固定频段分析的限制,而且在去除噪声方面更加有效;
  • 与FFT变换算法不同,VMD输出的信号分量具有良好的时频局部性质,更适用于分析非平稳信号。

因此,VMD变分模态分解算法可以提高信号处理领域的数据分析能力。

2、VMD变分模态分解算法优点总结

本算法的优点有:

  • VMD算法不需要滑动窗口技术,也不受到基础函数选取的影响,与其他时频分析算法相比,具有更广泛的适用性;
  • 与小波变换算法不同,VMD能够更好地去除噪声;
  • 与FFT变换算法不同,VMD输出的信号分量具有良好的时频局部性质,更适用于分析非平稳信号。

# 参数设置
K = 3  # EEMD中该参数设置无效,固定为3,改变该参数可能导致绘图出错
target_value = "预测量"  # 要预测的列在excel中的名字
if_plot = True  # 是否绘制分解图 True绘制,False不绘制,请注意,该功能在Linux子系统,MacOS等环境中可能不可用

# 数据读取
raw_data = pd.read_excel('./data.xlsx')[target_value].values

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值