pytorch学习笔记(八)

这篇PyTorch学习笔记详细介绍了CrossEntropyLoss的原理和计算过程,包括指数运算和-y*log(y_pred)的计算。同时,通过一个多分类的RNN模型实例,讲解了数据准备、模型构建和训练的整体思路。强调了数据类型和尺寸的注意事项,特别是输入x需要是Tensor,而y必须是LongTensor。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写了这么久,终于有感觉了。以后再编辑文章,要慢慢趋与条例性

一、有关CrossEntropyloss()

二、有关多分类的一个RNN模型实例

一、有关CrossEntropyloss()

        crossentropyloss()就干两件事,一是softmax()运算,二是-y*log(y_pred)

 图片中的意思是,我有一个样本数据他们是[[0.2,0.1,-0.1]]。(用一个中括号他的size是3,而用两个中括号size是[1,3]。这点是新手非常容易忽视的。)它的含义是我这个样本可能属于三个分类(第0类,第一类,第二类)中的一个,而数值的大小表示了可能性的大小(后面经过运算会变成概率,但此时他们之间的概率大小关系已经很明确了)。这个样本数据的标签是[0]它是第0类(如果是[1]表示第一类,[2]表示第二类)。

而crossentropyloss()的作用开始:

        1,求指数运算:[0.2,0.1,-0.1] ->[0.38,0.34,0.28]。

        2,运算-y*log(y_pred)(是第0类y:[1,0,0],        -y*log(0.38)

                                                第一类y:[0,1,0]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值