BERT学习汇总(视频)

BERT是一种基于Transformer的预训练模型,由预训练和微调两阶段组成。预训练阶段通过MLM(Masked Language Modeling)和NSP(Next Sentence Prediction)任务训练模型,微调阶段则用于下游NLP任务。在预训练中,输入经过Embedding和Encoder处理,预测被遮盖的词和判断句子关系,以此更新模型参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(先大致了解一下整体性的框架,然后再进一步深究,最终彻底明白这个模型)

一、介绍bert模型

        BERT就是12层的Transformer的Encoder的组合。分为预训练(pre-training)与微调(Fine-tune)。

        预训练:简单来说就是通过两个任务联合训练得到bert模型。(NSP & MLM)

       微调:在得到bert模型基础上进行各种各样的NLP任务(下游任务)。

      预训练(pre-training)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值