第一步:安装ollama并运行大模型

注意!本文档所使用的FastGPT为本地开源版,没有使用docker安装

1.安装docker

2.安装ollama:

docker run -d --gpus all -e OLLAMA_KEEP_ALIVE=-1 -v ollama:/root/.ollama -p 3002:11434 --name ollama ollama/ollama

其中 gpus 是使用gpu运行ollama,-e OLLAMA_KEEP_ALIVE=-1 是为了让大模型始终保持在内存中,不会用着用着 模型就得重新加载

3.安装Embedding

ollama run shaw/dmeta-embedding-zh

 这里会报错:Error: "shaw/dmeta-embedding-zh" does not support generate
这是正常的

4.安装大模型

ollama run qwen:7b

 5.安装mongoDB、pg等docker命令在下面
下面是创建一个存放目录

mkdir dockerYml
cd dockerYml

 将下方文档保存到 dockerYml文件夹下,名称为:docker-compose.yml

# 数据库的默认账号和密码仅首次运行时设置有效
# 如果修改了账号密码,记得改数据库和项目连接参数,别只改一处~
# 该配置文件只是给快速启动,测试使用。正式使用,记得务必修改账号密码,以及调整合适的知识库参数,共享内存等。

version: '3.3'
services:
  pg:
    image: ankane/pgvector:v0.5.0 # git
    # image: registry.cn-hangzhou.aliyuncs.com/fastgpt/pgvector:v0.5.0 # 阿里云
    container_name: pg
    restart: always
    ports: # 生产环境建议不要暴露
      - 5432:5432
    networks:
      - fastgpt
    environment:
      # 这里的配置只有首次运行生效。修改后,重启镜像是不会生效的。需要把持久化数据删除再重启,才有效果
      - POSTGRES_USER=username
      - POSTGRES_PASSWORD=password
      - POSTGRES_DB=postgres
    volumes:
      - ./pg/data:/var/lib/postgresql/data
  mongo:
    image: mongo:5.0.18
    container_name: mongo
    restart: always
    ports:
      - 27017:27017
    networks:
      - fastgpt
    command: mongod --keyFile /data/mongodb.key --replSet rs0
    environment:
      - MONGO_INITDB_ROOT_USERNAME=myusername
      - MONGO_INITDB_ROOT_PASSWORD=mypassword
    volumes:
      - ./mongo/data:/data/db
    entrypoint:
      - bash
      - -c
      - |
        openssl rand -base64 128 > /data/mongodb.key
        chmod 400 /data/mongodb.key
        chown 999:999 /data/mongodb.key
        echo 'const isInited = rs.status().ok === 1
        if(!isInited){
          rs.initiate({
              _id: "rs0",
              members: [
                  { _id: 0, host: "mongo:27017" }
              ]
          })
        }' > /data/initReplicaSet.js
        # 启动MongoDB服务
        exec docker-entrypoint.sh "$$@" &

        # 等待MongoDB服务启动
        until mongo -u myusername -p mypassword --authenticationDatabase admin --eval "print('waited for connection')" > /dev/null 2>&1; do
          echo "Waiting for MongoDB to start..."
          sleep 2
        done

        # 执行初始化副本集的脚本
        mongo -u myusername -p mypassword --authenticationDatabase admin /data/initReplicaSet.js

        # 等待docker-entrypoint.sh脚本执行的MongoDB服务进程
        wait $$!
  mysql:
    image: mysql:8.0.36
    container_name: mysql
    restart: always
    ports:
      - 3306:3306
    networks:
      - fastgpt
    command: --default-authentication-plugin=mysql_native_password
    environment:
      # 默认root密码,仅首次运行有效
      MYSQL_ROOT_PASSWORD: oneapimmysql
      MYSQL_DATABASE: oneapi
    volumes:
      - ./mysql:/var/lib/mysql
  oneapi:
    container_name: oneapi
    image: ghcr.io/songquanpeng/one-api:v0.6.7-alpha.9
    ports:
      - 3001:3000
    depends_on:
      - mysql
    networks:
      - fastgpt
    restart: always
    environment:
      # mysql 连接参数
      - SQL_DSN=root:oneapimmysql@tcp(mysql:3306)/oneapi
      # 登录凭证加密密钥
      - SESSION_SECRET=oneapikey
      # 内存缓存
      - MEMORY_CACHE_ENABLED=true
      # 启动聚合更新,减少数据交互频率
      - BATCH_UPDATE_ENABLED=true
      # 聚合更新时长
      - BATCH_UPDATE_INTERVAL=10
      # 初始化的 root 密钥(建议部署完后更改,否则容易泄露)
      - INITIAL_ROOT_TOKEN=fastgpt
    volumes:
      - ./oneapi:/data
    extra_hosts:
      - 'host.docker.internal:host-gateway'

执行命令:

docker-compose up

到此前期准备工作完成

<think>好的,我现在需要帮助用户在CentOS 7上部署Ollama运行DeepSeek模型。首先,我得理清楚整个流程,确保每个步骤都正确无误。 用户要求的是完整的流程,包括依赖安装Ollama配置、模型下载和测试。我需要先确认Ollama在CentOS 7上的兼容性。记得Ollama是用Go编写的,可能需要安装一些基础依赖,比如开发工具和必要的库。CentOS 7默认的软件包可能比较旧,可能需要启用EPEL或其他仓库来获取更新的包。 首先,系统更新应该是第一步,用yum update来确保所有包都是最新的。然后安装依赖项,比如wget、curl、git,可能还需要gcc、make这些编译工具。Ollama可能需要Go环境,所以需要安装Go,但可能需要特定版本。或者,可能Ollama提供了预编译的二进制文件,这样就不用自己编译了,这样更方便。需要查一下Ollama的官方文档,看看安装方法。比如,他们可能提供curl到bash脚本直接安装,或者有rpm包。 另外,可能需要安装NVIDIA驱动和CUDA工具包,如果用户要在GPU上运行的话。不过如果用户没有GPU,可能只需要CPU版本。不过DeepSeek模型可能比较大,如果没有GPU的话运行起来会很慢。需要提醒用户注意这一点。 安装Ollama的话,可能需要下载二进制文件或者用snap安装。不过CentOS 7可能不支持snap,所以可能需要从GitHub下载二进制。比如,到Ollama的GitHub releases页面找到最新的Linux版本,用wget下载,然后解压到合适的位置,比如/usr/local/bin,设置执行权限。或者,可能需要配置systemd服务来管理Ollama的后台运行。 然后,配置Ollama的环境,可能需要设置环境变量,比如OLLAMA_MODELS指向模型存储的目录。然后启动Ollama服务,用systemctl命令。确认服务状态是否正常运行,端口是否监听(默认可能是11434)。 接下来是下载DeepSeek模型。需要确认该模型是否在Ollama支持的模型列表中。Ollama通常通过ollama pull命令来下载模型,比如ollama pull deepseek-7b。但需要确认模型的确切名称,可能需要用户访问DeepSeek的官网或Hugging Face模型库获取正确的模型名称或下载方式。如果Ollama没有直接支持,可能需要手动下载模型文件,配置Ollama的Modelfile来加载。 测试阶段,用户需要运行ollama run deepseek-7b这样的命令,然后输入提示词,比如“为什么天空是蓝色的?”,查看模型的回复是否正确,以及是否有错误信息。如果出现GPU相关的问题,可能需要检查CUDA驱动是否正确安装,或者Ollama是否编译了GPU支持。 另外,防火墙设置可能需要开放11434端口,或者关闭防火墙进行测试。SELinux也可能导致权限问题,可能需要临时设置为permissive模式。 总结步骤可能是: 1. 系统更新和安装依赖包。 2. 安装Ollama(二进制或源码)。 3. 配置Ollama服务。 4. 下载DeepSeek模型。 5. 运行和测试模型。 需要注意的潜在问题包括:依赖项缺失、GPU驱动问题、模型路径权限、防火墙/SELinux阻止访问等。需要逐一检查这些点,确保每个步骤都正确执行。</think>是在 CentOS 7 上部署 Ollama 运行 DeepSeek 模型的完整流程: --- ### 一、系统准备 1. **更新系统** ```bash sudo yum update -y && sudo yum install -y epel-release ``` 2. **安装基础依赖** ```bash sudo yum groupinstall "Development Tools" -y sudo yum install -y wget curl git cmake openssl-devel bzip2-devel libffi-devel ``` 3. **安装 NVIDIA 驱动(如需 GPU 支持)** - 参考 NVIDIA 官方文档安装对应驱动和 CUDA Toolkit - 验证驱动:`nvidia-smi` -- ### 二、安装 Ollama 1. **下载安装 Ollama** ```bash curl -fsSL https://ollama.com/install.sh | sh ``` 2. **配置系统服务** ```bash sudo systemctl enable ollama sudo systemctl start ollama ``` 3. **验证安装** ```bash ollama --version # 应显示版本号 curl http://localhost:11434 # 应返回 "Ollama is running" ``` --- ### 三、部署 DeepSeek 模型 1. **下载模型(需提前申请权限)** ```bash # 从 Hugging Face 下载(示例路径,需替换实际链接) git lfs install git clone https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat ``` 2. **转换为 Ollama 格式** ```bash mkdir -p ~/.ollama/models cp -r deepseek-7b-chat ~/.ollama/models/deepseek-7b ``` 3. **创建 Modelfile** ```bash echo "FROM deepseek-7b PARAMETER temperature 0.7" > ~/.ollama/models/deepseek-7b/Modelfile ``` 4. **导入模型** ```bash ollama create deepseek-7b -f ~/.ollama/models/deepseek-7b/Modelfile ``` --- ### 四、运行与测试 1. **启动模型** ```bash ollama run deepseek-7b ``` 2. **测试交互** ```text >>> 请解释量子计算的基本原理 (等待模型生成回答...) ``` 3. **API 调用测试** ```bash curl http://localhost:11434/api/generate -d '{ "model": "deepseek-7b", "prompt": "为什么天空是蓝色的?" }' ``` --- ### 五、常见问题处理 1. **GPU 加速问题** - 确认已安装 `nvidia-container-toolkit` - 启动时添加参数:`ollama serve --gpu=all` 2. **内存不足** - 尝试量化版本模型(如 4-bit 版本) - 增加交换空间:`sudo dd if=/dev/zero of=/swapfile bs=1G count=8 && sudo mkswap /swapfile && sudo swapon /swapfile` 3. **模型权限问题** ```bash sudo chown -R $USER:$USER ~/.ollama ``` --- ### 六、补充说明 1. 推荐配置:至少 32GB RAM + NVIDIA GPU (16GB VRAM) 2. 首次加载模型需要较长时间(约 5-15 分钟) 3. 可通过 `ollama list` 查看已安装模型 如需最新版模型支持,建议访问 DeepSeek 官方网站查看模型更新说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

子杣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值