VectorDB的使用方法

本文介绍了如何安装和使用VectorDB,包括依赖项(如MicrosoftVisualC++和DocArray),展示了如何创建文档、索引和执行搜索查询。重点在于将文本数据转换为向量并存储在数据库中进行高效检索。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🔗链接https://github.com/jina-ai/vectordb

安装: 以下3个都要安装才可以使用VectorDB

 1. Microsoft Visual C++ 14.00 

Microsoft Visual C++ 14.0: https://blog.csdn.net/ViatorSun/article/details/118699938

2. DocArray

pip install docarray

 3. VectorDB

pip install vectordb

本地使用方法:

官方的实例(github里的两段代码要拼到一起使用):

我将源代码的作用详细解释了下.

from docarray import BaseDoc           #基础文档class
from docarray.typing import NdArray    #N-dimension Array=N维度数组. 作用和np.arrya相近.

class ToyDoc(BaseDoc):    #继承BaseDoc
  text: str = ''          #text用于记录存储的文本.
  embedding: NdArray[128] #embedding是将文本(高维数据)压缩到128维度向量空间(低维数据)后的数据.

from docarray import DocList    #
import numpy as np
from vectordb import InMemoryExactNNVectorDB, HNSWVectorDB

# Specify your workspace path
db = InMemoryExactNNVectorDB[ToyDoc](workspace='./workspace_path') #指定后续数据存储的文件夹

# Index a list of documents with random embeddings
doc_list = [ToyDoc(text=f'toy doc {i}', embedding=np.random.rand(128)) for i in  range(1000)]  #创建一些ToyDoc数据,内容都是随机的
db.index(inputs=DocList[ToyDoc](doc_list)) #把数据存入db

# Perform a search query
query = ToyDoc(text='query', embedding=np.random.rand(128))  #给定要搜索的text和embedding.
results = db.search(inputs=DocList[ToyDoc]([query]), limit=10) #寻找db中与query向量距离最近的10个向量数据. 本质是计算embedding的距离.

# Print out the matches
for m in results[0].matches: #输出全部的搜索结果
  print(m)

以上解决了几个问题:

-->将数据和向量存储在数据库.

-->向量数据搜寻.

如何将数据转化为向量的方式并未解决, 另外一篇文本, 我将展示一个如何将text转化为向量信息.

Database: Text数据转化为向量. (高维往低维映射): http://t.csdnimg.cn/ppQPn​​​​​​​

<think>好的,用户想了解VectorDBBench的使用方法或教程。首先,我需要整理现有的引用信息,看看有哪些相关内容可以提供给用户。 根据引用[1],VectorDBBench的项目地址和安装指南已经提到,所以应该先指导用户安装。然后引用[3]提到配置文件的重要性,可能需要说明如何配置。引用[5]提到了使用LangChain SDK处理文本并插入到Milvus的例子,这可能作为示例应用。还有引用[4]关于docID和分组搜索的功能,应该在高级使用里提到。 接下来,用户可能需要基础的使用步骤,比如初始化连接,引用[2]中的代码示例可以展示如何创建数据库实例。此外,基准测试的配置和执行也是关键部分,引用[3]详细说明了配置文件的内容,需要解释如何调整这些参数。 可能还需要分步骤说明,从安装到配置,再到运行测试和实际应用示例。同时,用户可能有不同数据库的需求,要提到VectorDBBench支持多种数据库,但具体配置可能不同,建议参考文档。 最后,生成相关问题时要覆盖安装、配置、功能、支持数据库和结果分析等方面,确保用户能进一步探索。</think>关于VectorDBBench的使用方法,以下是结合官方文档和引用资料的详细说明: ### 一、安装与初始化 1. **项目安装** - 源码地址:https://gitcode.com/gh_mirrors/ve/VectorDBBench [^1] - 支持通过Git克隆仓库后,按照`requirements.txt`安装依赖 - 需确保Python环境为3.8+版本 2. **数据库连接初始化** ```python from tcVectorDB import VectorDB # 示例代码:连接Zilliz Cloud myTcVectorDB = VectorDB( url="your_database_url", username="your_username", key="your_api_key" ) # [^2] ``` ### 二、配置文件设置 核心配置文件通常为`config.py`,需配置以下参数: - **数据库连接参数**:URI、认证信息、超时时间 - **测试类型**:插入速度测试/查询准确性测试 - **数据规模**:向量维度、测试数据集大小 - **环境参数**:CPU/GPU资源分配、并发线程数[^3] ### 三、基础使用流程 1. **数据准备** - 使用LangChain SDK切分文本,生成Embedding向量(如`text-embedding-v2`模型) - 示例将原始文本与向量共同存储,支持后续语义搜索[^5] 2. **分组搜索功能** ```python # Milvus分组搜索示例 results = collection.search( data=query_vectors, group_by_field="docID", # 按文档来源分组 params={"nprobe": 10} ) # [^4] ``` ### 四、基准测试执行 1. 通过命令行启动测试: ```bash python run_benchmark.py --config=./configs/milvus_config.yaml ``` 2. 测试报告包含: - QPS(每秒查询数) - 延迟百分位数(P50/P90/P99) - 内存占用曲线
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值