论文综述——TEXT2EVENT: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction

1 任务介绍

这篇文章主要是介绍提出了一个统一抽取模型,目的是使用单一架构解决不同的信息抽取的任务,所以就提出了这篇文章核心内容:序列到结构网络。对于网络的输出,还提出了按需解码控制特定任务或场景设定下的抽取目标,这一部分就是后面会提到的按需可控生成,使用事件Schema来约束生成空间,这样对于不同的任务不需要改变模型,比如说想要用这个模型训练我们的医疗数据,直接把医疗事件的schema注入进去就可以了。提出该任务还有一个更重要的目的就是想要低成本,也就是低资源学习捕捉信息抽取任务所需的抽取能力,也就是不需要人为花费昂贵的代价去标数据,所以说仅仅需要粗粒度的预料就能完成,比如说对文本事件对直接进行训练。

在这里插入图片描述

对于每一个事件记录,都包含事件类型触发器参数,它们形成了一个类似表的结构。(就像上图中,一个文本通过了神经网络后再经约束和可控生成得到两个表,这两个表每个都包括一个事件类型、一个触发器和三个参数)

生成的结构由框架FrameSchema决定,所以不同的事件类型有不同的结构。上图中生成两个表Transport和Arrest-Jail,他们的结构完全不同,这是可控生成的结果。这句话其实是由两个部分组成,所以得到两个表。

在这里插入图片描述

接下来是一个事件可以由不同的话语来表达。下面这个例子两个句子分别表达the man离职。所以它们的事件表达是一致的。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

泤燃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值