TEXT2EVENT: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction
1 任务介绍
这篇文章主要是介绍提出了一个统一抽取模型,目的是使用单一架构解决不同的信息抽取的任务,所以就提出了这篇文章核心内容:序列到结构网络。对于网络的输出,还提出了按需解码控制特定任务或场景设定下的抽取目标,这一部分就是后面会提到的按需可控生成,使用事件Schema来约束生成空间,这样对于不同的任务不需要改变模型,比如说想要用这个模型训练我们的医疗数据,直接把医疗事件的schema注入进去就可以了。提出该任务还有一个更重要的目的就是想要低成本,也就是低资源学习捕捉信息抽取任务所需的抽取能力,也就是不需要人为花费昂贵的代价去标数据,所以说仅仅需要粗粒度的预料就能完成,比如说对文本事件对直接进行训练。
对于每一个事件记录,都包含事件类型、触发器和参数,它们形成了一个类似表的结构。(就像上图中,一个文本通过了神经网络后再经约束和可控生成得到两个表,这两个表每个都包括一个事件类型、一个触发器和三个参数)
生成的结构由框架Frame和Schema决定,所以不同的事件类型有不同的结构。上图中生成两个表Transport和Arrest-Jail,他们的结构完全不同,这是可控生成的结果。这句话其实是由两个部分组成,所以得到两个表。
接下来是一个事件可以由不同的话语来表达。下面这个例子两个句子分别表达the man离职。所以它们的事件表达是一致的。