
AI🌟
文章平均质量分 90
python/人工智能/机器学习/深度学习
七灵微
【代码+文档洁癖】每个技术都要数百次打磨。每个文章都要从【排版】到【内容】到【技术迭代】打磨优化N次。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【AI】本地LLM部署
下载中断后可恢复,未下载完全的文件会存在其文件夹中。原创 2025-07-02 16:09:53 · 1256 阅读 · 0 评论 -
【AI】NLP
基于上下文信息的文本增强,首先需要一个训练好的语言模型LM,对于需要增强的原始文本,随机去掉文中的一个词或字,取决于语言模型支持字还是词(取决于语言模型支持字还是词),将文本剩余部分输入语言模型,选择语言模型所预测的top k个词去替换掉原文对应的词,以形成新的k条文本。roberta是bert优化版,只是在数据量和训练方式上做改进,更大的数据量更好的训练方式训练的更久,去除了NSP任务有损模型性能,MLM换成dynamic masking LM, 更大的batchsize及其他超参数的调优。原创 2025-03-25 11:16:00 · 1134 阅读 · 0 评论 -
【AI】学术论文篇_如何读如何写
本文主要以AI为中心。原创 2025-02-13 15:27:10 · 772 阅读 · 0 评论 -
【AI】卷积神经网络CNN
代码不一定都要重写,东西不变故事变也是可以的深度学习中 特色的形状 不同的样子很重要,而不是纠结几个卷积几个池化,从VGG之后开始转向这一点要知道之前历史中的工作成果是哪些,弄清楚figure out。原创 2025-02-07 14:16:25 · 1021 阅读 · 0 评论 -
【数据分析】基础篇
埋点(Tracking Point 或 Data Tracking)是指在应用程序、网站或软件系统的关键位置设置数据采集代码,用于记录用户行为、系统事件或业务流程中的关键数据。埋点的主要目的是为后续的数据分析、用户行为分析、业务决策优化和产品改进提供数据支持。转化率监控:跟踪用户从进入系统到完成目标(如购买、注册)的路径。行为分析:记录用户点击、页面访问、滑动、表单提交等行为。性能监控:收集系统性能数据,如加载时间、错误日志等。业务数据监控:统计销售额、订单量等业务关键指标。原创 2025-01-23 18:18:16 · 1441 阅读 · 0 评论 -
【AI】Pytorch_模型&构建
下图是一个三维卷积:利用二维卷积在一张图片的3个通道上进行,最后叠加起来。padding:可以利用它保持特征图shape不变dilation:空洞卷积'''(1)功能:对多个二维信号进行二维卷积;(2)参数:in_channels: 输入通道数;out_channels: 输出通道数,等于卷积核的个数;kernel_size: 卷积核的尺寸;stride: 步长,stride步长是滑动时两个维度都一同滑动几个像素;padding: 填充个数,保证输入和输出图像在尺寸上是匹配的;原创 2024-09-03 21:50:46 · 1958 阅读 · 0 评论 -
【AI】Pytorch_损失函数&优化器
持续更新至pytorch大部分内容更完。本文已达到10w字,故按模块拆开,详见目录导航。整体框架如下损失函数及优化器。原创 2024-09-03 21:51:28 · 2172 阅读 · 0 评论 -
【AI】学习路径
AI学习路径。原创 2024-11-30 22:55:26 · 1335 阅读 · 0 评论 -
【AI】Sklearn
>深度学习->强化学习。原创 2024-11-27 21:44:01 · 1216 阅读 · 0 评论 -
【AI】竞赛指南
个人笔记,仅供本人学习使用。->深度学习->强化学习。原创 2024-11-07 15:42:58 · 846 阅读 · 0 评论 -
【AI】numpy_pandas_matplotlib_spicy合集
个人笔记,仅供本人学习使用。结合阅读《西瓜书》、《机器学习实战 Peter Harrington》、《吴恩达机器学习》《统计学习方法》《百面机器学习》多本著作总结的。numpy使用Matplotlib使用->深度学习->强化学习。原创 2024-10-30 15:12:09 · 445 阅读 · 0 评论 -
【AI】数学_线代微积分概率论最优化
个人笔记,仅供本人学习使用。原创 2024-10-15 15:14:41 · 794 阅读 · 0 评论 -
【AI】机器学习详解1
定义为将线性函数结果映射到sigmoid函数中,分类常是离散型的,可能是分段函数等,存在分段点或不连续则不可求导,sigmoid是连续性的函数,且可以从0.5作为分界点。越大表明欠拟合,越小表明过拟合。过拟合就是将数据噪声也学习了,训练的时候效果很好,损失函数值可以降得很低,但是到测试数据集的时候表现就不那么好了,原因是过分依赖于现有训练数据集的特征造成的。在构建模型的过程中,在每个 epoch 中使用验证数据测试当前已构建的模型,得到模型的损失和准确率,以及每个 epoch 的验证损失和验证准确率。原创 2024-08-14 00:01:40 · 1689 阅读 · 0 评论 -
【AI】CV基础1
0表示黑,255表示白,其他数字表示不同的灰度。不管其图像格式是PNG,还是BMP,或者JPG,在PIL中,使用Image模块的open()函数打开后,返回的图像对象的模式都是“RGB”。F:32位浮点型像素。为32位浮点灰色图像,它的每个像素用32个bit表示,0表示黑,255表示白,(0,255)之间的数字表示不同的灰度。在一片灰度均匀的区域,有一个噪声点(噪声之所以是噪声,本身其像素值就凸显于其他周围区域),经过二阶导数处理后,噪声点更加孤立明显了,尤其在这些灰度平滑区域更加的显眼,噪声被放大了。原创 2024-08-11 19:09:31 · 1053 阅读 · 0 评论 -
【AI】OCR篇1
通过透视变换,我们可以实现将一张正对我们的图片转换成仰视、俯视、侧视看这张图片的效果,反之也可以实现转换到正对的效果。OCR传统方法在应对复杂图文场景的文字识别能力不够,如何把文字在复杂场景读出来,并且读得准确,关键在于。版面分析 、预处理-> 行列切割 -> 字符识别 -> 后处理识别矫正。原创 2024-08-06 14:46:59 · 1445 阅读 · 0 评论 -
【AI】可变形卷积Deformable Conv
卷积对大家来说并不陌生了,这里主要描述Deformable Conv。其在论文中也是常见的一个术语,Deformable Convolutional Networks(DCN) 还可以细分成可变形卷积、对候选区域的池化等。原创 2024-08-05 14:18:15 · 998 阅读 · 1 评论 -
【AI】常见的术语解释汇总
发现论文中经常有术语和专业词汇,在这里进行长期更新汇总。原创 2024-08-05 11:22:42 · 931 阅读 · 0 评论 -
【AI】opencv-python形态学操作合集
算法原理:(灰度图像仅有0,1两种像素值) 在给定的结构元素(kernel滤波器)下,遍历图像的每个像素,并将其值替换为该像素周围邻域内像素的最小值。边缘检测和轮廓提取:形态学梯度运算可以用来提取图像中的边缘和轮廓,顶帽和黑帽运算都是形态学梯度运算的一种,它们可以通过突出图像中物体的边缘和轮廓来提高图像的清晰度和对比度。可在腐蚀后使用,在腐蚀操作中,消除噪声的同时,有价值的信息也减少了。斑块提取和分离:对于一些特定的应用,比如在医学图像处理中,顶帽和黑帽运算可以用来提取和分离某些特定的斑块,如肺结节等。原创 2024-08-04 10:05:45 · 1104 阅读 · 0 评论 -
【AI】Pytorch_数据&预处理
整体框架如下打开jupyter lab,打开一个file,右上角选择kernel为torchgpuprivate要在 Mac M1的GPU 上运行 PyTorch 代码,使用命令 torch.device(“mps”)来指定。之后就只需要引用gpu_a,gpu_b,其他与cpu_a…的操作没有区别。Variable已经合并到tensor 但是对于理解张量有帮助。variable是torch.autograd中的数据类型,用于封装tensor进行自动求导,有五个属性data:被包装的tenso原创 2024-07-26 00:30:42 · 835 阅读 · 0 评论 -
【AI】消融实验ablation study
为了更好地了解该系统,作者进行了一项消融研究,移除系统的不同部分–例如,移除卷积神经网络的一个或两个全连接层,性能损失却出奇地小,这让作者得出以下结论,CNN中最有代表性最显著的部分是卷积层而非连接层。验证是否运行原理符合你的假设(移除系统中的特定的部分,来控制变量式的研究这个部分对于系统整体的影响。如果去除之后系统性能明显的下降,则说明这一部分的设计是必不可少的。这里要注意其中每个其中列出的模块是互相独立的,当模块C是基于模块B时,也就是不存在A+C模型的组合方式时,需要将上表中对应A+C的行删去。原创 2024-06-19 00:53:49 · 1499 阅读 · 0 评论 -
【AI】Netron
友情链接Netron 是一个神经网络、深度学习和机器学习模型的浏览器。它可以为模型的架构生成具有描述性的可视化。原创 2024-05-03 22:56:18 · 614 阅读 · 0 评论 -
【AI】ONNX
友情链接开放神经网络交换(Open Neural Network Exchange)简称ONNX,是微软和Facebook提出用来表示深度学习模型的开放格式。所谓开放就是ONNX定义了一组和环境,平台均无关的标准格式,来增强各种AI模型的可交互性。无论你使用何种训练框架训练模型(比如TensorFlow/Pytorch/OneFlow/Paddle),在训练完毕后你都可以将这些框架的模型统一转换为ONNX这种统一的格式进行存储。原创 2024-05-03 22:36:24 · 1227 阅读 · 2 评论 -
PyTorch进阶学习笔记[长期更新]
第一章 PyTorch简介和安装PyTorch是一个很强大的深度学习库,在学术中使用占比很大。我这里是Mac系统的安装,相比起教程中的win/linux安装感觉还是简单不少(之前就已经安好啦),有需要指导的小伙伴可以评论。第二章 基础知识这里划重点!张量的创建/随机初始化a = torch.tensor(1.0, dtype...原创 2025-04-14 00:05:03 · 3011 阅读 · 0 评论 -
【AI】隐马尔可夫模型hmm初探
hmm可以处理两种情景的问题,监督式和非监督式。监督式学习指的是你拥有一个输入变量(x)和一个输出变量(Y),使用某种算法去学习从输入到输出的映射函数,Y=f(X)。目标:是足够好的近似映射函数,以便当我们在新的数据 ( x )上可以预测输出变量(Y)。监督式学习可被分为分类和回归问题。分类则输出变量属于某一类,回归指的是输出变量是一个实值。非监督式学习指没有类别信息,通过对对象大量样本数据分析实现对样本分类只有输入但没有相关输出变量。目标是找到数据潜在结构和分布建模。用于分类问题,包含聚类.原创 2021-05-22 21:19:20 · 231 阅读 · 0 评论