1.M-P神经元
M-P神经元,全称为McCulloch-Pitts神经元,是一种数学模型,用于模拟生物神经元的功能。这个模型是由Warren McCulloch和Walter Pitts在1943年提出的。它是人工智能和计算神经科学领域中非常重要的早期模型。
M-P神经元接收n个输入(通常来自其他神经元),并给各个输入赋予权重计算加权和,然后和自身特有的阈值θ\thetaθ进行比较(作减法),最后经过激活函数(模拟“抑制”和“激活”)处理得到输出(通常是给下一个神经元)
y=f(∑i=1nwixi−θ)=f(wTx+b) y=f(\sum_{i=1}^nw_ix_i-\theta)=f(w^Tx+b) y=f(i=1∑nwixi−θ)=f(wTx+b)
单个M-P神经元:感知机(sgn作激活函数)、对数几率回归(sigmoid作激活函数)
多个M-P神经元:神经网路
2.感知机(分类模型)
2.1 sgn函数
sgn 函数,或称为符号函数(sign function):是一个数学函数,用于确定一个实数的符号。sgn 函数的定义如下:
- 当x>0时,sgn(x)=1
- 当x=0时,sgn(x)=0
- 当x<0时,sgn(x)=-1
图像如下:
2.2 感知机
1)模型
其具体公式如下:
y=sgn(wTw−θ)={
1,wTx−θ>=00,wTx−θ<0 y=sgn(w^Tw-\theta) =\begin{cases} 1& ,{w^Tx-\theta>= 0}\\ 0& ,{w^Tx-\theta<0} \end{cases} y=sgn(wTw−θ)={
10,wTx−θ>=0,wTx−θ<0
其中,x∈RNx\in \mathbb{R}^Nx∈RN为样本的特征向量,是感知机模型的输入,w,θw,\thetaw,θ是感知机模型的参数,w∈Rnw\in \mathbb{R}^nw∈Rn为权重,θ\thetaθ 为阈值
从几何的角度来说,给定一个线性可分的数据集T,感知机的学习目标是求得能对数据集T中的正负样本完全正确划分的超平面,其中wTx−θw^Tx-\thetawTx−θ即为超平面方程。
n维空间的超平面(wTx+b=0,其中w,x∈Rn)(w^Tx+b=0,其中w,x \in \mathbb R^n)(wTx+b=0,其中w,x∈Rn):
- 超平面方程不唯一
- 法向量w垂直于超平面
- 法向量w和位移项b确定一个唯一超平面
- 法向量w指向的那一半空间为正空间,另一半为负空间
缺点: 只能解决线性可分的问题
模型图如下所示,只包含一个输入层和一个输出层。
2)策略
感知机的学习策略是,随机初始化