在README里用英文给你说的很清楚
1.首先下载权重文件和配置文件。
执行这个脚本 prebuild.sh。可以把脚本里的不需要的部分注释掉。提高下载速度。
./prebuild.sh
2.编译工程
cd objectDetector_Yolo
export CUDA_VER=10.0
make -C nvdsinfer_custom_impl_Yolo
这时候会在nvdsinfer_custom_impl_Yolo文件夹里生成.so文件
3.运行示例
deepstream-app -c deepstream_app_config_yoloV3_tiny.txt
一、首先是sources\objectDetector_Yolo文件夹里配置文件、权重文件和相关的库文件。
deepstream_app_config_yoloV3_tiny.txt deepstream配置文件
config_infer_primary_yoloV3_tiny.txt GStreamer等的配置文件
nvdsinfer_yolo_engine.cpp 根据网络类型创建引擎
nvdsparsebbox_Yolo.cpp yolo目标检测结果的输出
yoloPlugins.h
yoloPlugins.cpp 模型搭建的一些组件以及相应的实现
kernels.cu cuda核最底层的实现
trt_utils.h
trt_utils.cpp 建立tensorRT网络的部分,已经支持的部分
yolo.h
yolo.cpp 创建引擎、创建网络等的具体实现
二、另外一个文件夹
sources\apps\sample_apps\deepstream-app
deepstream_app.c pipeline的一些操作在这里
deepstream_app.h
deepstream_app_config_parser.c 配置文件的解析
deepstream_app_main.c deepstream主函数
1、yolo部分/tensorRT部分(只是deepstream流水线的一部分)
cuda最底层实现—model搭建+建立tensorRT支持的网络部分—创建引擎、创建网络(卷积层啥的)—
网络类型创建engine + yolo model输出===编译后生成动态库文件custo_m_impl_Yolo.so
2、deepstream部分
配置文件解析—根据配置文件建立pipeline—图像显示
pipeline包含了对tensorRT的调用
=====备注
tensorRT:深度学习推理优化器
cuda:运算平台,是GPU能解决复杂的计算问题