deepstream4.0运行yoloV3_tiny

本文详细介绍了如何在NVIDIA DeepStream上部署YoloV3 Tiny模型,包括下载权重与配置文件、编译工程、运行示例等步骤。同时,解析了涉及的各文件作用及cuda、tensorRT在目标检测中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在README里用英文给你说的很清楚

 1.首先下载权重文件和配置文件。
    执行这个脚本   prebuild.sh。可以把脚本里的不需要的部分注释掉。提高下载速度。
    ./prebuild.sh
 2.编译工程
 cd  objectDetector_Yolo
 export CUDA_VER=10.0
 make -C nvdsinfer_custom_impl_Yolo     
 这时候会在nvdsinfer_custom_impl_Yolo文件夹里生成.so文件
 3.运行示例
 deepstream-app -c deepstream_app_config_yoloV3_tiny.txt

 一、首先是sources\objectDetector_Yolo文件夹里配置文件、权重文件和相关的库文件。
 deepstream_app_config_yoloV3_tiny.txt     deepstream配置文件
 config_infer_primary_yoloV3_tiny.txt        GStreamer等的配置文件
 nvdsinfer_yolo_engine.cpp   根据网络类型创建引擎
 nvdsparsebbox_Yolo.cpp    yolo目标检测结果的输出
 yoloPlugins.h    
 yoloPlugins.cpp  模型搭建的一些组件以及相应的实现
 kernels.cu        cuda核最底层的实现
 trt_utils.h
 trt_utils.cpp    建立tensorRT网络的部分,已经支持的部分
 yolo.h
 yolo.cpp      创建引擎、创建网络等的具体实现
 
 二、另外一个文件夹
 sources\apps\sample_apps\deepstream-app
 deepstream_app.c     pipeline的一些操作在这里
 deepstream_app.h
 deepstream_app_config_parser.c     配置文件的解析
 deepstream_app_main.c       deepstream主函数

1、yolo部分/tensorRT部分(只是deepstream流水线的一部分)
cuda最底层实现—model搭建+建立tensorRT支持的网络部分—创建引擎、创建网络(卷积层啥的)—
网络类型创建engine + yolo model输出===编译后生成动态库文件custo_m_impl_Yolo.so

2、deepstream部分
配置文件解析—根据配置文件建立pipeline—图像显示
pipeline包含了对tensorRT的调用

=====备注
tensorRT:深度学习推理优化器
cuda:运算平台,是GPU能解决复杂的计算问题

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值