假设检验,p-value,glm

本文探讨了Fisher提出的显著性检验的三种解读:小p值确信结果、大p值质疑大规模实验、中p值引导实验设计优化。重点关注零假设检验在回归分析中的应用,以及如何根据p值调整实验设计以提升研究效力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fisher指出显著性检验可能得出的三种结论:

一. p-value很小(通常是小于0.01),他认为某种结果已经确实无疑地表现出来了,也就是说基本能够否定原假设了。

二. p-value很大(通常大于0.2),他宣称即使这个结果真的存在,也会因为该结果发生的可能性太小,所以不可能有任何能够显示出这个结果的大规模实验。其大意就是因为p-value不显著,即使真实的情况是原假设是错误的,也会因为这种情况发生的几率太小,使得在实际中没办法做那么大样本的实验来支持这一论点。

三.p-value介于二者之间,Fisher则讨论了应如何设计下一个实验,才能够优化自己的结果

glm假设检验都是假设只有一个参数,其余均为0(null model)
所有回归的假设检验的原假设都是系数为零,所以也叫零假设

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值