论文导读#1:《ImageNet Classification with Deep Convolutional Neural Networks》

本文是对《ImageNet Classification with Deep Convolutional Neural Networks》的解读,探讨了深度学习在图像分类任务中的应用。论文介绍了如何使用CNN解决复杂分类问题,通过数据增强、Relu激活函数、Overlapping Pooling等技术降低过拟合,以及在GPU并行计算上的优化策略。研究证明了CNN在特征提取和模型性能上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

论文原版+笔记:

前言

二、数据集

三、网络结构

四、降低过拟合

五、学习细节

六、结果

七、讨论

总结


论文原版+笔记:

链接:https://pan.baidu.com/s/10E5LzDewLlXW8O2WH4AWUw 
提取码:av5z


前言

本文章是笔者读完《ImageNet Classification with Deep Convolutional Neural Networks》后,对于论文的归纳总结,可以给尚未读者作为一个论文概述。

  • 本文为原创,如需转载,请标明出处。
  • 如文中有错误之处,欢迎指出。
  • 如文中有任何侵权行为,请联系删除。

一、介绍

  • 此前分类任务大多使用传统的Machine Learning技术,并且数据集规模较小。
  • 近期大规模数据集的出现:ImageNet...
  • 图片分类任务相对来说是一个复杂的任务,要求模型具有强大的学习能力(learning capacity),并且需要提供先验知识(priori knowledge);只有这样才能使用相对任务复杂度来说较少的数据,学习到一个精准强大的模型。
  • 论文中的CNNs模型可以通过调节单层宽度(width)和网络深度(depth)来控制整个模型的学习能力。
  • 论文中使用的CNNs相对传统的MLP(Multi-Layer Perceptron)具有更少的参数(由于kernel实现了参数共享),所以训练速度上更快。
  • 即使CNNs降低了参数,但是由于图片分类问题的复杂性,网络的参数仍然很多;论文还通过 a) 两个GPU同时训练;b) 高优化的conv操作 ;来加速训练过程

二、数据集

  • Top5 error rate:模型预测结果中5个概率最高的标签中不包含正确标签的比例。
  • ImageNet数据集中的图片尺寸是不固定的,而模型要求输入的尺寸是固定的(224*224)。所以需要对图片进行预处理,将原始图片下采样(down sample)到 256*256 (为什么模型的输入是224*224而下采样到256*256后面有解释)

三、网络结构

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值