目录
论文原版+笔记:
链接:https://pan.baidu.com/s/10E5LzDewLlXW8O2WH4AWUw
提取码:av5z
前言
本文章是笔者读完《ImageNet Classification with Deep Convolutional Neural Networks》后,对于论文的归纳总结,可以给尚未读者作为一个论文概述。
- 本文为原创,如需转载,请标明出处。
- 如文中有错误之处,欢迎指出。
- 如文中有任何侵权行为,请联系删除。
一、介绍
- 此前分类任务大多使用传统的Machine Learning技术,并且数据集规模较小。
- 近期大规模数据集的出现:ImageNet...
- 图片分类任务相对来说是一个复杂的任务,要求模型具有强大的学习能力(learning capacity),并且需要提供先验知识(priori knowledge);只有这样才能使用相对任务复杂度来说较少的数据,学习到一个精准强大的模型。
- 论文中的CNNs模型可以通过调节单层宽度(width)和网络深度(depth)来控制整个模型的学习能力。
- 论文中使用的CNNs相对传统的MLP(Multi-Layer Perceptron)具有更少的参数(由于kernel实现了参数共享),所以训练速度上更快。
- 即使CNNs降低了参数,但是由于图片分类问题的复杂性,网络的参数仍然很多;论文还通过 a) 两个GPU同时训练;b) 高优化的conv操作 ;来加速训练过程
二、数据集
- Top5 error rate:模型预测结果中5个概率最高的标签中不包含正确标签的比例。
- ImageNet数据集中的图片尺寸是不固定的,而模型要求输入的尺寸是固定的(224*224)。所以需要对图片进行预处理,将原始图片下采样(down sample)到 256*256 (为什么模型的输入是224*224而下采样到256*256后面有解释)