1.动机
UniT,它通过统一transformer联合学习跨不同领域的多个任务。我们的UniT模型可以同时处理8个数据集上的7个任务,从对象检测到视觉和语言推理以及自然语言理解,同时通过紧凑的模型参数集实现每个任务的强大性能。
我们提出了一个统一的transformer模型UniT,它可以同时学习跨不同领域的最重要的任务,从对象检测到自然语言理解和多模态推理。基于transformer编码器-解码器体系结构,我们的UniT模型用编码器对每个输入模态进行编码,并在编码输入表示上使用共享解码器对每个任务进行预测,然后是特定于任务的输出头。整个模型端到端联合训练,每个任务都有损失。与之前使用变压器进行多任务学习的研究相比,我们在所有任务中共享相同的模型参数,而不是分别微调特定于任务的模型,并处理跨不同领域的更高种类的任务。在我们的实验中,我们在8个数据集上联合学习了7个任务,在参数显著减少的情况下,在每个任务上都取得了较好的成绩。是否有可能建立一个单一的模型,同时处理各种领域的任务,作为迈向普遍智能的一步?之前的工作试图解决其中的一些问题,但只是在有限的范围内:
A.仅适用于来自单个域或特定多模态域的任务;ViT和DETR关注的是仅视觉的任务,BERT及其衍生物只处理语言任务,而Visu- alBERT, VILBERT等多模态变换只研究视觉和语言的特定多模态域。
B.涉及每个任务的特定任务的微调,不利用任何任务之间的共享参数,通常以N倍于N个任务的参数结束,例如,一个人必须分别使用BERT对每个任务的模型进行微调。
C.仅从一个领域对相关或类似的任务进行多任务处理,有时使用硬编码的训练策略;例如,T5只适用于语言领域的任务,而VILBERT-MT只适用于相关的视觉和语言任务。
2.贡献
在本研究中,我们建立了一个以图像和/或文本为输入的统一transformer(UniT)模型,并联合训练多种任务,从视觉感知和自然语言理解到联合视觉和语言推理。单位由transformer编码每个输入通道作为一个隐藏的状态序列(特征向量),和一个transformer在编码译码器输入模式,紧随其后的是特定于任务的输出头应用于解码器隐状态使预测为每个任务。与之前使用transformer进行多任务学习的工作相比,我们在更大种类的任务上取得了与之前建立良好的工作相当的性能;不仅是视觉与语言的联合任务,如视觉问题的回答,而且是只有视觉和语言的任务。我们在这项工作中做出了以下贡献:
我们提出了一种统一的transformer编码器-解码器体系结构UniT,它可以处理多个任务,并在一个模型中使用更少的参数完成主要任务,这是向通用智能迈出的一步。
我们共同学习视觉和文本领域及其交叉点中最突出的任务,即GLUE基准中的对象检测、视觉回答(VQA)、视觉蕴含和自然语言理解任务,包括QNLI、MNLI、QQP和SST-2。
我们证明这些不同的任务可以同时学习,并在我们的训练方案下适当收敛。通过对多种任务的分析,我们发现,多模态任务(如VQA和视觉蕴涵)从使用单模态任务的多任务训练中受益。
3.相关工作
大多数以前的transformer应用和扩展都为每个感兴趣的任务提供了特定的模型。在BERT中,预训练的transformer模型在多个下游语言任务上分别进行微调。在T5中,文本到文本转换器是针对不同的语言任务进行联合预训练的。然而,尽管通过多任务预训练学习了通用表示,T5仍然为每个下游任务微调了一组不同的参数。相反,我们在一个transformer中同时学习多个任务。

我们的UniT模型的概述,使用统一的transformer编码器-解码器体系结构联合处理不同领域的广泛任务。我们的模型使用一个图像编码器对视觉输入进行编码,一个文本编码器对语言输入进行编码,以及一个带有每个任务查询embedding的联合解码器,后面是任务特定的头,以实现每个任务的最终输出。此外,我们的模型允许端到端训练直接通过图像像素,而不是依赖于预先训练的检测器.
与多模态预训练相比。之前的作品如VirTex、Voken和VisualBERT表明,对多模态数据(如图像标题)的预训练有助于下游的视觉、语言或多模态任务,这通常是通过构建专门的模型来完成的—通过对每个下游任务进行微调。与这些方法不同,我们在一个共享模型中处理所有任务,跨领域的一般知识不会因为对特定下游任务的微调而丢失。我们相信,联合解决跨领域不同任务的能力是迈向通用的关键一步。
3.Unit
考虑了两种输入方式:图像和文本。对于提出的基于transformer的图像输入编码器,首先应用了卷积神经网络主干提取可视化特征图,再由transformer编码器将其编码为一个隐藏状态列表,以整合全局上下文信息。对于语言输入,使用BERT,特别是12层uncased版本,将输入词(例如问题)编码为BERT最后一层的一系列隐藏状态。在将输入模态编码为隐藏状态序列后,将transformer解码器应用于单个编码模态或两个编码模态的级联序列,以确定任务是单模态(即仅视觉或仅语言)还是多模态,即探索在所有任务之间使用单独的解码器(即特定于任务的解码器)或共享的解码器。最后,来自transformer解码器的表示特征被传递给一个特定任务预测头,比如一个简单的两层分类器,以输出最终的预测。鉴于UniT的简单性,它可以很容易地扩展到更多的模态和输入。
图像编码器。在模型中,用一个由transformer编码器控制的卷积神经网络将输入图像I编码成一个编码的视觉隐藏状态列表。图像编码过程受到DETR的启发。首先,在输入图像上应用卷积神经网络骨干网络B来提取尺寸为Hv×Wv×dbv的视觉特征映射。主干网络B遵循ResNet-50的结构,并将dilation应用于其最后一个C5块,并且在DETR中对目标检测进行预训练。在特征映射上应用具有Nv层和隐藏大小dev的视觉transformer编码器E,将其进一步编码为L倍大小的视觉隐藏状态hv。此外,考虑到不同的任务(如目标检测和VQA)可能需要提取不同类型的信息,还在transformer编码器中添加了任务嵌入向量wtask,以允许它在输出中提取特定于任务的信息。任务标记wtask是维度dev的可学习的参数,该参数和初始的扁平视觉特征列表做级联,并将其从输出隐藏状态中剥离出来。视觉transformer编码器E的结构遵循DETR,其中将位置编码添加到特征映射中。
4.贡献
提出了UniT,一个统一的transformer编码器-解码器体系结构,以较少的参数在一个单一模型中处理多个任务和领域,并向通用智能迈进了一步。
可以同时学习多种任务,并在提出的训练方案下适当地融合。共同学习视觉和文本领域中最突出的任务及其交叉点,即GLUE benckmark中的目标检测、视觉问答(VQA)、视觉蕴涵和自然语言理解任务,包括QNLI、MNLI、QQP和SST-2。
UniT在多任务训练中的性能优于对象检测和VQA。在所有三个数据集上,我们使用一个共享解码器的最终模型的性能优于单独训练的单任务模型。在COCO检测和VQAv2数据集上,我们还对最终模型的测试开发拆分进行了评估。
我们进一步探讨了对每个任务的共享模型(第5行)进行微调,发现虽然每个任务的微调对对象检测带来了显著的提升。
不同配置的单元模型在COCO检测、SNLI-VE和MNLI上的消融分析, 其他任务如第6行所示。请注意,尽管mAP在检测上更好,但每个任务的微调会导致8倍多的参数、更长的训练和一般性的损失,这是我们希望避免的,因为我们的目标是构建一个通用模型。
在这项工作中,我们展示了转换器框架可以应用于多个领域,在一个统一的编码器-解码器模型中联合处理多个任务。我们的UniT模型同时处理跨越8个数据集的7个任务,在一个单一的训练步骤中学习它们,并通过一个紧凑的共享参数集在每个任务上实现强大的性能。通过一个领域不可知的转换器体系结构,我们的模型向构建通用智能体迈出了一步,该智能体能够处理不同领域的广泛应用,包括视觉感知。