决策树代码(数据集以西瓜集为例我自己手录)

这篇博客主要展示了如何运用决策树算法,通过详细注释的代码展示使用过程,数据集采用西瓜集,读者可以下载数据集进行实践。文章包含源码和数据集链接,适合初学者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

决策树理论数据这里不讲,只把我的代码贴出来。代码一部分来源机器学习实战,详细的注释是我自己加的。另一部分源码我自己写的(处理西瓜集的部分),如有错误欢迎指正。


一、使用步骤

1.源码

代码如下(示例):

from math import log
import operator

def convert(filename):
    fr = open(filename,encoding="utf-8")
    arrayOfLines = fr.readlines()
    #print(arrayOfLines)
    labels = arrayOfLines[0]
    attrubute = labels.strip().split(",")
    del(attrubute[0])
    del(attrubute[-1])
    del(arrayOfLines[0])
    fileLineNumber = len(arrayOfLines)
    for i in range(fileLineNumber):
        arrayOfLines[i] = arrayOfLines[i].strip().split(',')
        del(arrayOfLines[i][0])
    return arrayOfLines,attrubute



#定义函数CalShannonEnt()用于计算样本空间的信息熵
def calcShannonEnt(dataSet):
    numEntries 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值