前言
《Aggregated Residual Transformations for Deep Neural Networks》
论文地址:https://arxiv.org/abs/1611.05431
2017CVPR上的论文,ResNeXt是ResNet和Inception的结合体,因此你会觉得与InceptionV4有些相似,但却更简洁,同时还提出了一个新的维度: cardinality (基数),在不加深或加宽网络增加参数复杂度的前提下提高准确率,还减少了超参数的数量。
网络结构
相比于InceptionV4这里将卷积核设计为统一的尺寸,也就是将resnet在宽度上进行复制。
实际实现上,是再进一步进行了等效转换的,采用了分组卷积的方法。
网络结构和参数:
对比实验
模型的参数:
假设是第一列C=1 d=64:256 · 64 + 3 · 3 · 64 · 64 + 64 · 256 ≈ 70k
再满足总的参数差不多的情况下,作者设计了多种组合模型进行对比实验(trade off):
卷积核维度变小,Cardinality增多,效果更好。其实也可以把ResNet看作是ResNext的特殊形式。
为了展示增加Cardinality在比增加深度和宽度更有优势,作者对其他模型进行了对比:
也超过了当时的InceptionV4等:
思考
从数据上来看,ResNeXt比InceptionV4的提升也算不上质的飞跃,因此选择的时候还是要多加考虑。
- Inception系列网络设计得复杂,有个问题:网络的超参数设定的针对性比较强,当应用在别的数据集上时需要修改许多参数,因此可扩展性一般。
- ResNeXt确实比Inception V4的超参数更少,但是他直接废除了Inception的囊括不同感受野的特性仿佛不是很合理,在有些环境中Inception V4的效果是优于ResNeXt的。ResNeXt的运行速度应该是优于Inception V4的,因为ResNeXt的相同拓扑结构的分支的设计更符合GPU的硬件设计原则。
- ResNeXt和ResNet相比,本质上是引入了group操作同时加宽了网络,每个block的前两个卷积层宽度和原来ResNet相比增加了一倍(卷积核维度)。宽度增加应该是效果提升的主要来源。但是如果不用group操作,单纯增加宽度的话,显然计算量和参数要增加不少,因此采用group操作可以减少计算量和参数量,通过控制分组的数量(基数)来达到两种策略的平衡。至于Cardinality,差不多就是宽度的同义词。
😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃
上一篇:CNN卷积神经网络之SENet