SLAM论文翻译(1) - LeGO-LOAM: Lightweight and Ground-OptimizedLidar Odometry and Mapping on Variab

LeGO-LOAM是一种轻量级、地面优化的激光雷达里程计和映射方法,适用于地面车辆的实时六自由度位姿估计。通过点云分割和特征提取,利用地平面优化,实现低计算成本下的高精度。与传统的LOAM相比,LeGO-LOAM在资源有限的嵌入式系统上表现更好,减少计算成本的同时保持相似或更高的精度。实验证明,LeGO-LOAM在复杂环境和多变地形中具有较高的鲁棒性和精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1 引言

2 系统硬件

3 轻型激光雷达里程计和建图

A 系统概述

B 分割 

C 特征提取 

D Lidar里程计

E Lidar建图

四 实验

 A 小规模UGV测试

 B 大规模UGV测试

C 基准测试结果

D 使用KITTI数据集的环路闭合测试

 五 结论与讨论


摘要:我们提出了一种轻量级和地面优化的激光雷达测距和测绘方法LeGO-LOAM,用于地面车辆的实时六自由度位姿估计。LeGO-LOAM重量轻,因为它可以在低功耗嵌入式系统上实现实时姿态估计。LeGO-LOAM进行了地面优化,因为它在分割和优化步骤中利用了地平面。我们首先采用点云分割滤波噪声,然后进行特征提取,得到不同的平面特征和边缘特征。然后,两步Levenberg-Marquardt优化方法使用平面和边缘特征来求解连续扫描的六自由度变换的不同组成部分。我们比较了LeGO-LOAM与最先进的方法LOAM的性能,使用从可变地形环境和地面车辆收集的数据集,并表明LeGO-LOAM在减少计算费用的情况下实现了类似或更好的精度。我们还将LeGO-LOAM集成到SLAM框架中,以消除漂移引起的位姿估计误差,并使用KITTI数据集进行测试。

1 引言

        在智能机器人的功能中,地图构建和状态估计是最基本的前提条件之一。利用基于视觉和激光雷达的方法实现实时6自由度同步定位与测绘(SLAM)。虽然基于视觉的方法在闭环检测方面具有优势,但如

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值