自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

郝开的博客

上班打卡、下班打卡

  • 博客(265)
  • 资源 (1)
  • 收藏
  • 关注

原创 Nginx 高可用架构实践:Keepalived 实现故障自动切换,Keepalived主备模式(双机热备),Keepalived互备模式(互为主备,互持 VIP)

本文介绍了利用Keepalived实现Nginx高可用的两种架构模式。主备模式使用1个虚拟IP,主节点提供服务,备节点监控待命;互备模式使用2个虚拟IP,两节点同时服务。Keepalived基于VRRP协议实现故障自动切换,通过vrrp_script监控Nginx状态。配置参数包括全局定义、健康检查脚本和VRRP实例设置,其中priority决定节点优先级,weight动态调整优先级。主备模式适合中小系统,互备模式适合高并发场景,确保服务持续可用。

2025-07-07 16:26:26 922

原创 Spring Boot 项目自定义启动图案(ASCII Art)教程:修改 Spring Boot 启动图案,在线 ASCII 艺术字生成器

在开发 Spring Boot 项目的过程中,为了让项目启动日志更个性化或具备辨识度,我们常常会在控制台输出一个具有特色的 ASCII 图案,例如项目 Logo 或欢迎语。本文将介绍:- 如何在 Spring Boot 启动时打印自定义图案- 推荐几个优秀的在线 ASCII 艺术字生成器网站- 实践示例:为你的项目添加自定义启动图案

2025-07-04 10:14:24 968

原创 Redis可视化工具RedisInsight:下载RedisInsight,新建连接Redis数据库,使用RedisInsight,添加String类型,添加Hash类型,添加JSON类型

RedisInsight是Redis官方推出的跨平台可视化工具,提供图形界面管理Redis数据库。支持多种数据类型操作(String/Hash/JSON)、命令行界面(CLI)和性能分析器(Profiler)。安装简单,可自定义隐私设置,通过直观界面实现键值管理、属性编辑和过期时间设置。特别提供命令帮助功能,适合开发运维人员高效使用Redis,具备实时监控和日志记录能力。

2025-06-26 18:08:30 1092

原创 Cherry Studio管理大模型

Cherry Studio是一款全能AI助手平台,支持多模型对话、知识库管理和AI绘画等功能。用户可通过官网下载并配置Ollama作为本地AI服务商:在设置中添加Ollama模型,管理已下载模型后即可开始对话。该平台兼具易用性和扩展性,适合各类用户提升工作效率。官网提供详细文档指导配置流程。

2025-06-25 14:29:28 413

原创 Ollama部署本地DeepSeek,Open WebUI可视化

本文介绍了使用Ollama和Open WebUI部署本地大模型DeepSeek的完整流程。首先通过Ollama官网自定义安装路径和模型目录,然后使用Docker Desktop部署Open WebUI可视化界面。详细说明了Open WebUI的初始设置步骤,包括创建管理员账户、语言设置,以及如何从Ollama导入模型(如deepseek-r1:7b)。最后提供了Ollama官方模型库的访问方式,帮助用户选择合适的模型版本进行本地部署。该方案实现了大模型的本地化管理和可视化交互。

2025-06-20 10:15:40 491

原创 AI的发展过程:深度学习中的自然语言处理(NLP);大语言模型(LLM)详解;Transformer 模型结构详解;大模型三要素:T-P-G 原则

摘要: AI经历了从符号主义(规则系统)到机器学习(数据驱动),再到深度学习(神经网络)的演进。自然语言处理(NLP)是AI的核心领域,早期依赖统计方法,后由Transformer架构(基于自注意力机制)革新。大语言模型(LLM)如GPT通过海量数据预训练(T-P-G原则:Transformer结构、预训练、生成式预测)实现文本理解与生成,其核心是逐token概率预测。Transformer的并行计算和长距离依赖处理能力使其成为LLM的基石,推动AI进入智能生成新时代。(149字)

2025-06-11 18:04:26 1201

原创 扩展:React 项目执行 yarn eject 后的 package.json 变化详解及参数解析

React 项目执行 yarn eject 后的 package.json 变化详解,package.json 参数解析。

2025-05-12 18:10:57 670

原创 扩展:React 项目执行 yarn eject 后的 scripts 目录结构详解

执行 yarn eject 后,create-react-app 会将 react-scripts 中的核心脚本抽出到本地的 scripts 目录中,便于开发者自定义开发、构建和测试流程。

2025-05-12 17:40:04 495

原创 扩展:React 项目执行 yarn eject 后的 config 目录结构详解

在 React 项目中执行 yarn eject 后,create-react-app 隐藏的 Webpack 配置将被暴露,生成 config/ 目录。该目录包含构建、开发和测试所需的配置文件,如 env.js(环境变量配置)、getHttpsConfig.js(HTTPS 配置)、modules.js(模块路径配置)、paths.js(项目路径管理)、webpack.config.js(Webpack 主配置)和 webpackDevServer.config.js(开发服务器配置)。

2025-05-12 17:27:31 960

原创 1. 使用 IntelliJ IDEA 创建 React 项目:创建 React 项目界面详解;配置 Yarn 为包管理器

本文详细介绍了如何使用 IntelliJ IDEA 创建 React 项目,并配置 Yarn 作为包管理器,如何使用 Yarn 重新安装项目依赖。

2025-05-12 15:24:09 1437

原创 Yarn vs npm 全面对比:谁才是最适合你的前端包管理器

在前端开发中,npm 和 Yarn 是两大主流包管理器,各有优劣。Yarn 由 Facebook 开发,安装速度更快,支持离线缓存,安全性强,适合中大型项目和 Monorepo。npm 由官方维护,适合个人项目和小型组件库,v7 后性能有所提升。两者均兼容 npm 仓库,但同一项目中不应混用。选择时需根据项目类型和团队规范决定。对于使用 React、Vue 等框架的开发者,推荐使用 Vite + Yarn 组合,以提升开发效率。

2025-05-12 14:44:37 581

原创 Java启动和停止jar文件sh脚本:1.自适应文件名方式启停 + 写死环境 启动;2.自适应文件名方式 + 命令行传参切换环境 启动;3.自适应文件名方式 + 支持追加参数 启动

本文介绍了两种Java启动和停止jar文件的sh脚本方案。第一种方案支持自适应文件名方式启停,并写死环境启动,适用于版本号变化的jar文件,启动时自动查找匹配的jar文件,无需手动修改文件名。第二种方案在第一种的基础上增加了命令行传参切换环境的功能,默认环境为test,支持运行时传参切换环境(如prod、dev)。两种方案均提供了启动脚本(start.sh)和停止脚本(stop.sh),启动脚本通过nohup启动服务,停止脚本通过PID终止服务。这些脚本简化了Java应用的部署和管理,提高了运维效率。

2025-05-09 10:06:46 475

原创 Nginx 配置参数全解版:Nginx 反向代理与负载均衡;Nginx 配置规范与 Header 透传实践指南;Nginx 配置参数详解

本篇文档从 反向代理 和 负载均衡 两个核心维度,全面介绍 Nginx 配置方式,细化到每一个可配置参数、其作用、可选值与推荐实践。

2025-04-24 11:29:00 1382

原创 docx4j解析HTML转Word异常:NoSuchFieldError: COURIER_BOLD_OBLIQUE;jaxb.suninternal.NamespacePrefixMapper

请注意,docx4j 的 11.x 系列使用 Jakarta XML Binding(jakarta.xml.bind),而 8.x 系列使用 Javax XML Binding(javax.xml.bind)。​因此,确保您的项目依赖项与所使用的 Java 版本和 XML Binding 版本兼容。​本案例使用 Java 8 进行集成,spring-boot-starter-parent 版本 2.7.9。

2025-04-16 10:08:28 1197

原创 解决允许Traceroute探测:防火墙出站规则中禁用echo-reply(type 0)、time-exceeded(type 11)、destination-unreachable(type 3)

解决允许Traceroute探测:在防火墙出站规则中禁用echo-reply(type 0)、time-exceeded(type 11)、destination-unreachable(type 3)类型的ICMP包。

2025-03-12 11:22:03 1022

原创 解决远程主机允许路由转发 【原理扫描】:将/proc/sys/net/ipv4/ip_forward 置为0

解决远程主机允许路由转发 【原理扫描】:将/proc/sys/net/ipv4/ip_forward 置为0。路由转发即当主机根据数据包的目的 IP 地址将发往本 IP 的包根据路由表继续转发数据包。这通常是路由器所要实现的功能。出于安全考虑,Linux 系统默认是禁止数据包转发。

2025-03-12 10:52:14 516

原创 解决ICMP timestamp请求响应漏洞:在您的防火墙上过滤外来的ICMP timestamp(类型 13)报文以及外出的ICMP timestamp回复报文

解决ICMP timestamp请求响应漏洞:在您的防火墙上过滤外来的ICMP timestamp(类型 13)报文以及外出的ICMP timestamp回复报文

2025-03-11 17:48:05 1495

原创 Windows 系统下安装 RabbitMQ 的详细指南

确保 RabbitMQ 的版本与已安装的 Erlang 版本兼容。您可以在 RabbitMQ 的 版本兼容性页面 查看详细信息。

2025-03-10 13:38:26 8387

原创 选型消息队列(MQ):ActiveMQ、RabbitMQ、RocketMQ、Kafka对比

ActiveMQ:适合轻量级消息传输,适用于传统企业应用。RabbitMQ:适用于高可靠性、低延迟的金融支付、IM、订单管理等业务。RocketMQ:兼顾高吞吐和高可靠性,适合电商、互联网金融、日志分析。Kafka:以高吞吐和低延迟著称,适用于日志分析、流式计算、大数据处理。希望本文能帮助你在不同场景下做出最佳 MQ 选型决策,提升系统的稳定性和扩展性。

2025-03-10 11:04:44 1296

原创 Windows 安装 ElasticSearch 及 Kibana,系统要求,启动 ElasticSearch,启动 Kibana,Kibana 开发工具发送请求到 ElasticSearch

ElasticSearch 是一个开源的分布式搜索和分析引擎,广泛应用于各种数据检索、实时分析和日志管理场景。它是基于 Apache Lucene 构建的,提供了比 Lucene 更强大的分布式能力和更高效的搜索与分析性能。ElasticSearch 在多个领域都有广泛的应用,包括日志数据分析、监控、实时搜索、推荐系统等。ElasticSearch 提供了强大的 RESTful API,便于与其他系统集成,并且能够处理各种规模的数据集,支持横向扩展,能够处理大数据量的高效查询。

2025-03-06 16:39:29 1443

原创 Elasticsearch 索引如何建立:索引结构设计, 需要分词的字段,需要索引但不分词的字段,仅存储但不索引的字段,经纬度字段的索引规则,复合字段的存储策略,copy_to聚合字段

在建立 Elasticsearch 索引时,需要根据字段的用途选择合适的 mapping 方式。主要从以下几个维度进行分析:是否需要分词:针对全文搜索的数据,通常需要分词(如文章内容、商品描述等)。是否用于搜索:决定字段是否需要被检索(如用户 ID 可能不用于搜索)。是否需要存储:部分字段仅用于索引,不需要存储(如日志数据的原始文本可能不存储)。是否需要聚合:如品牌、类别等字段可能用于聚合统计。是否唯一:如用户 ID、邮箱等唯一值可以不分词,且通常不需要索引。

2025-03-06 15:46:02 609

原创 安装IK分词器;IK分词器配置扩展词库:配置扩展字典-扩展词,配置扩展停止词字典-停用词

IK分词配置扩展词库:配置扩展字典-扩展词,配置扩展停止词字典-停用词。

2025-03-05 15:22:21 720

原创 ElasticSearch 分词器介绍及测试:Standard(标准分词器)、English(英文分词器)、Chinese(中文分词器)、IK(IK 分词器)

ElasticSearch 提供了多种内置的分词器(Analyzer),用于文本的分析和分词。分词器是文本分析的核心,决定了如何把输入的文本字符串分解成一个个“词项”(token)。不同的分词器适用于不同的语言和场景,如中文、英文等。本文将介绍常用的分词器及其应用。

2025-03-05 14:43:38 1287

原创 XPath常见用法示例,XPath基础语法

XPath(XML Path Language)是一种用于在XML文档中查找信息的语言,广泛应用于HTML解析、网页抓取、Web自动化测试等领域。本文将详细介绍XPath的基本语法,并提供常见用法示例,帮助您更好地理解和使用XPath。

2025-02-19 13:58:21 1204

原创 Scrapy报错:LookupError: unknown encoding: ‘b‘utf8‘‘;xpath解析报错:LookupError: unknown encoding: ‘b‘utf8‘‘

Scrapy报错:LookupError: unknown encoding: ‘b‘utf8‘‘;xpath解析报错:LookupError: unknown encoding: ‘b‘utf8‘‘

2025-02-19 13:56:04 625 1

原创 Scrapy安装,创建Scrapy项目,启动Scrapy爬虫

Scrapy 是一个功能强大且高效的 Python 爬虫框架,适合各种规模的网页数据抓取任务。无论是单个网页抓取,还是大规模的网站爬取,Scrapy 都能提供优秀的性能和易于扩展的架构。如果你正在寻找一种可靠的工具来进行数据采集、分析或自动化任务,Scrapy 无疑是一个非常好的选择。希望这篇博客能帮助你快速上手 Scrapy,开始自己的爬虫之旅!

2025-02-18 14:57:08 2188 1

原创 Python 爬虫框架对比与推荐

在进行 Python 爬虫开发时,选择合适的框架对项目的高效性与可维护性至关重要。每种框架都有其特定的优势和适用场景。本文将对常见的 Python 爬虫框架进行详细对比,帮助开发者根据需求做出选择。

2025-02-18 13:41:47 1800 1

原创 Ollama命令使用指南

Ollama 提供了一系列强大的命令,方便用户管理和运行语言模型。以上命令可以帮助你高效使用 Ollama,完成模型创建、运行、管理等操作。

2025-02-10 14:07:38 11632

原创 Ollama自定义安装路径,Ollama自定义模型下载目录

Ollama 默认安装位置是在C盘,默认下载的模型位置也在C盘,我们期望安装在其他盘符的目录下。

2025-02-10 13:47:45 4050

原创 Windows 中使用 Docker Desktop 部署 Open WebUI 做大模型可视化

Windows 中使用 Docker Desktop 部署 Open WebUI 做大模型可视化。Docker Desktop 版本:v4.37.1汉化文件:app-4.37-windows-x86.asar。

2025-02-08 21:41:49 3455

原创 Open WebUI:构建大模型与 Web 应用无缝对接的理想平台,Open WebUI 简介,Open WebUI 应用场景,Open WebUI 与大模型结合的优势,Open WebUI 使用示例

Open WebUI 是一个开源平台,旨在简化大模型(如 GPT、BERT 等)与 Web 应用的对接。它提供了一个灵活且可扩展的 Web 用户界面框架,使得开发者能够快速构建与复杂 AI 系统交互的 Web 应用。如果想深入了解 Open WebUI 的使用方法,可访问Open WebUI 官方文档,获得更多示例和 API 文档。Open WebUI 是构建与大规模语言模型(如 GPT、BERT 等)无缝对接的理想平台。

2025-02-08 16:14:46 4608

原创 Windows安装Docker Desktop的两种方式,命令行安装Docker Desktop,Docker Desktop汉化,Docker Desktop更换磁盘镜像存放目录及报错解决

使用Docker Desktop搭建本地大模型可视化界面。Docker Desktop 版本:v4.37.1汉化文件:app-4.37-windows-x86.asar。

2025-02-05 15:14:26 9930 5

原创 Ollama:一站式 AI 模型管理与交互平台,Ollama 简介,Ollama 的核心功能,Ollama 的使用场景

Ollama是一个开源的、基于容器化技术的 AI 模型管理与交互平台。它为开发者提供了一个统一的环境来管理、部署和与不同类型的 AI 模型进行互动。Ollama 支持各种常见的 AI 模型,包括但不限于大规模语言模型(如 GPT 系列)、计算机视觉模型、强化学习模型等。它的设计理念是简化 AI 模型的使用和集成,减少开发者的工作负担,让他们能够专注于应用层面的创新。

2025-02-05 15:10:24 1040

原创 Windows系统中Docker可视化工具对比分析,Docker Desktop,Portainer,Rancher

本文将对几种常用的Windows系统下Docker可视化工具进行详细对比,帮助用户根据自己的需求选择合适的工具。内容包括每款软件的优缺点、适用场景、更新频率等,提供官网链接以便于下载和了解更多信息。

2025-01-31 17:29:42 2692

原创 NumPy;NumPy在数据分析中的应用;NumPy与其他库的搭配使用

NumPy 是 Python 的一个扩展库,主要用于处理高效的多维数组操作。它提供了一个叫做ndarray的数组对象,能够快速处理大量数值数据,同时提供了丰富的数学、统计和线性代数运算功能。NumPy 是许多数据科学库(如 SciPy、Pandas、Matplotlib)的基础,几乎所有的数据科学任务都离不开它。

2025-01-17 22:27:00 1384

原创 Jupyter;Jupyter特点;安装Jupyter;Conda安装Jupyter;Pip安装Jupyter;如何使用 Jupyter;启动Jupyter Notebook;Jupyter创建与运行

Jupyter 是一个开源的交互式计算平台,支持多种编程语言(如 Python、R、Julia 等)。它允许用户创建和共享文档,文档中可以包含代码、方程式、可视化和叙述文本。Jupyter Notebook 是 Jupyter 的核心工具,广泛应用于数据分析、机器学习、教育和科学计算等领域。

2025-01-17 16:28:22 879

原创 IPython;安装IPython;IPython使用场景;IPython魔法命令;IPython使用技巧

IPython 是一个增强型的交互式 Python 编程环境,最初设计用于改进标准 Python shell 的功能。它广泛应用于科学计算、数据分析和机器学习等领域,提供了许多便捷的特性。丰富的魔法命令强大的调试工具系统命令支持它是数据科学、教育和自动化领域的理想工具,也是 Jupyter Notebook 的基础组件之一。

2025-01-14 21:14:11 1056

原创 Anaconda安装教程及环境变量添加;Anaconda环境管理;Anaconda包管理;Anaconda常用命令

Anaconda 是一个流行的开源数据科学平台,集成了众多工具和库,为 Python 和 R 提供强大的开发与运行环境。通过 Anaconda,开发者可以轻松管理包和环境,同时利用大量预装的数据科学工具。Anaconda 是数据科学和机器学习领域的强大工具。借助其环境管理器和包管理器,开发者能够轻松管理项目中的复杂依赖关系。本篇文章通过介绍 Anaconda 的安装、环境与包管理,以及与 Python 的结合使用,旨在帮助读者快速上手。善用本文提供的命令和技巧,可以显著提升开发效率并优化工作流程。

2025-01-14 20:43:35 2585

原创 Python中的可变对象与不可变对象;Python中的六大标准数据类型哪些属于可变对象,哪些属于不可变对象

在Python中,数据类型分为可变对象和不可变对象,它们在内存中的表现方式有所不同,特别是在进行数据修改时,是否会影响对象的内存地址。本文将通过Python中的六大标准数据类型(数字、字符串、列表、元组、集合、字典)来分析哪些属于可变对象,哪些属于不可变对象。

2025-01-08 21:20:25 666

原创 Python 中深拷贝和浅拷贝

在 Python 中,深拷贝(Deep Copy)和浅拷贝(Shallow Copy)是两种常见的对象复制方式。它们之间的主要区别在于拷贝的对象以及拷贝过程中引用的处理方式。

2025-01-08 09:53:13 585

微服务拆分Demo(用户服务、订单服务)

微服务拆分Demo(用户服务、订单服务)

2023-11-25

open jdk的60版本源码

open jdk的60版本源码

2023-09-10

html5基于Bootstrap响应式企业博客后台模板

html5基于Bootstrap响应式企业博客后台模板 Oreo高端后台管理仪表板主题模板,它建造在流行的Bootstrap4框架上,完全基于HTML5 + CSS3标准。充分的响应式兼容每一个设备。4款主页风格。主要功能有:1、文件管理器(新)。2、电子商务管理(新)。3、收件箱满应用(新)。4、博客与仪表板应用程序。5、准备使用的小部件。6、聊天应用程序(新)。

2022-04-04

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除