
模型保存
文章平均质量分 50
为啥全要学
在下小白
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
微调后的模型保存与加载
在Hugging Face Transformers库中,微调后的模型保存与加载方式因微调方法不同而有所差异。常规微调时,可以使用save_pretrained()方法保存整个模型(包括权重、配置、分词器),并通过from_pretrained()加载。对于参数高效微调(如LoRA),只需保存适配器权重,加载时需将适配器与原模型合并。此外,Trainer API支持自动保存策略,而基于Unsloth的微调模型则提供了多种保存选项,包括轻量级适配器保存、全量模型合并保存、GGUF高效推理格式导出以及多格式混合原创 2025-05-21 20:14:59 · 767 阅读 · 0 评论 -
大模型下载到本地
【代码】大模型下载到本地。原创 2025-05-21 19:50:44 · 196 阅读 · 0 评论 -
PyTorch模型保存方式
PyTorch提供了两种主要的模型保存方式:仅保存模型参数和保存完整模型对象。原创 2025-05-19 21:11:21 · 279 阅读 · 0 评论 -
模型量化与保存
【代码】模型量化与保存。原创 2025-05-21 19:19:19 · 392 阅读 · 0 评论