博图SCL语言教程:灵活加、减计数制作自己的增减计数器(CTUD)

博图SCL语言教程:使用SCL实现增减计数器(CTUD)

一、什么是增减计数器(CTUD)?

增减计数器(Up-Down Counter)是PLC编程中的基础功能块,具有以下特性:

  1. CU (Count Up):上升沿触发计数值增加

  2. CD (Count Down):上升沿触发计数值减少

  3. R (Reset):复位计数值到0

  4. LD (Load):装载预设值到当前值

  5. PV (Preset Value):目标设定值

  6. 当 CV >= PV 时,QU 输出为True

  7. 当 CV <= 0 时,QD 输出为True

二、SCL实现代码(完整函数块)

FUNCTION_BLOCK FB_CTUD
VAR_INPUT
    CU: BOOL;       // 加计数脉冲(上升沿有效)
    CD: BOO
### 如何在CVAT中实现实例分割 为了在CVAT中实现高效的实例分割,可以利用U2Net模型进行自动化分割标注[^1]。具体而言,在CVAT环境中配置并部署U2Net能够显著提升实例分割任务的工作效率。 #### 配置环境与安装依赖项 首先需确保已正确设置好Python虚拟环境,并按照官方文档完成CVAT服务器端的搭建工作。对于想要集成U2Net或其他自定义神经网络的情况,则还需要额外准备相应的推理引擎及其配套库文件。 ```bash pip install -r requirements.txt ``` #### 导入预训练权重至CVAT插件体系内 下载经过充分验证过的高质量预训练参数包(如来自PyTorch Hub),将其上传到指定位置以便后续调用: ```python import torch.hub as hub model = hub.load('pytorch/vision:v0.9.0', 'u2net', pretrained=True) torch.save(model.state_dict(), './weights/u2net.pth') ``` #### 创建新的作业并启用自动标注功能 当创建一个新的标注任务时,选择合适的像集作为输入源;接着激活“Auto Segmentation”选项卡下的开关按钮来启动基于U2Net算法驱动的服务接口。此时系统会尝试识别每张片中的目标对象轮廓边界线,并据此生成初步的结果草供人工审核校正之用。 #### 结果审查与修正 尽管借助AI工具可大幅轻劳动强度,但仍建议由经验丰富的专业人士负责最终质量把控环节——即仔细检查机器给出的所有预测标签是否准确无误,必要时手动调整错误之处直至满意为止。 #### 输出格式转换支持多平台应用需求 考虑到不同下游应用场景可能采用各异的数据结构描述方式,因此有必要提供灵活便捷的方法用于将内部表示形式转化为外部标准协议所规定的样式。例如针对YOLO系列框架使用者来说,就可以参照特定脚本把原始JSON记录改写成TXT文本列表[^2]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

控界小宇宙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值