在数据分析过程中对合并的训练集和测试集进行标记

一、对训练集和测试集进行标记后合并

df = pd.concat([train.assign(is_train = 1),test.assign(is_train = 0)]) #合并train和test,并且用is_train进行标记

这样做的好处是能够将合并后的数据集将训练集和测试集分开来进行标记。

二、利用好这一特征更好的做分析

例如:

train = df['is_train'] == 1##提前进行标记
test  = df['is_train'] == 0

获取样本比例:

train_count = len(df[train])
print('训练集样本量是',train_count)
test_count = len(df[test])
print('测试集样本量是',test_count)
print('样本比例为:', train_count/test_count)

获取训练集和测试集中某一变量的唯一值:

print("训练集buyer_admin_id:",len(df[train]['buyer_admin_id'].unique()))
print("测试集buyer_admin_id:",len(df[test]['buyer_admin_id'].unique()))

进行取交集:

set.intersection(set(df[test]['buyer_admin_id'].unique()),set(df[train]['buyer_admin_id'].unique()))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值