-
标量:只有大小没有方向的物理量
-
向量:又称矢量,既包含大小又包含方向的物理量
-
矩阵:矩阵是一个二维数组,其中的每一个元素一般由两个索引来确定,一般用大写变量表示。
-
张量:矢量概念的推广,可以用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数。【标量是0阶张量,矢量是1阶张量,矩阵是2阶张量】
-
矩阵的秩:矩阵列向量中的极大线性无关组的数目,记作列秩。行秩=列秩=矩阵的秩,通常记作rank(A)。
-
矩阵的逆:若A为方阵,当rank(A)<n时,称A为奇异矩阵或不可逆矩阵。若rank(A)=n时,A为非奇异矩阵或可逆矩阵。
- 如果矩阵不为方阵或者是奇异矩阵,不存在逆矩阵,但是可以计算其广义逆矩阵或者伪逆矩阵。
对应于矩阵A,若存在矩阵B使得ABA=A,则称B为A的广义逆矩阵。
- 机器学习中常见的矩阵分解:特征分解和奇异值分解
-
矩阵的特征值和特征向量:若矩阵A为方阵,则存在非零向量xxx和常数λ\lambdaλ满足Ax=λxAx=\lambda xAx=λx,则称λ\lambdaλ为A的一个特征值,xxx为矩阵A关于λ\lambdaλ的特征向量。
矩阵的迹和行列式的值:tr(A)=∑i=1nλitr(A)=\sum_{{i=1}^{n}}\lambda_{i}tr(A)=∑i=1nλi,∣A∣=∏i=1nλi\left | A \right | = \prod_{i=1}^{n}\lambda_{i}∣A∣=∏i=1nλi -
矩阵的特征分解:若矩阵An×nA_{n\times n}An×n存在n个不同的特征值,那么矩阵可以分解为A=U∑UTA=U\sum U^{T}A=U∑UT
∑=[λ10⋯00λ2⋯000⋱⋮00⋯λn]U=[u1,u2,⋯ ,un] \sum = \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0\\ 0 & 0& \ddots & \vdots\\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix} U = \begin{bmatrix} u_{1},u_{2},\cdots,u_{n} \end{bmatrix} ∑=⎣⎢⎢⎢⎡λ10000λ200⋯⋯⋱⋯00⋮λn⎦⎥⎥⎥⎤U=[u1,u2,⋯,un]
其中uiu_{i}ui是标准化的特征向量,即满足∥ui∥2=1\left \| u_{i} \right \|_{2}=1∥ui∥2=1 -
奇异值分解:对于任意矩阵Am×nA_{m\times n}Am×n,存在正交矩阵Um×mU_{m\times m}Um×m,Vn×nV_{n\times n}Vn×n,使得其满足A=U∑VTA=U\sum V^{T}A=U∑VT,UTU=VTV=IU^{T}U=V^{T}V=IUTU=VTV=I.则称上式为矩阵A的特征分解,其中∑\sum∑为m×nm\times nm×n的矩阵。
- 求解过程
1.ATAA^{T}AATA的特征值的{λi\lambda_{i}λi}和特征向量{viv_{i}vi}
2.AATAA^{T}AAT的特征向量{uiu_{i}ui}
3.U=[u1,⋯ ,um]U = \begin{bmatrix} u_{1},\cdots,u_{m} \end{bmatrix}U=[u1,⋯,um],V=[v1,⋯ ,vn]V = \begin{bmatrix} v_{1},\cdots,v_{n} \end{bmatrix}V=[v1,⋯,vn],∑=diag(λi)\sum = diag(\sqrt \lambda_{i})∑=diag(λi)
- 求解过程