行业案例丨DolphinDB 如何助力券商攻克毫秒级行情处理难题?

作为金融机构的核心服务平台,行情中心能提供实时行情数据的获取、指标计算、数据存储和数据分发等服务,为交易、投资、风险管理等业务部门提供重要支持。随着国内投资业务的高速发展,行情数据所包含的微观交易结构信息越来越受到券商自营团队、资管团队以及各类基金的重视。在此背景下,传统行情中心面的技术瓶颈逐渐显露——数据吞吐量不足历史查询卡顿开发效率低下,成为证券、资管数字化转型的“拦路虎”。近年来,大批券商、资管机构通过引入 DolphinDB 构建新一代行情中心,不仅实现了亿级数据服务从 T+1 向毫秒级实时响应的升级,更开启了行情中心向流批一体投研仿真系统换代升级的新篇章。

1. 吞吐量不足、计算延时高、多系统拼凑,传统架构的破局时刻

过去十年间,证券市场的资产种类、交易规模、业务复杂度呈指数级增长。随着北交所开市、跨境资产配置兴起,券商行情中心需要覆盖全球20多个市场、超10万种证券的全资产类型。面对如此庞大的数据量,行情系统往往要满足三大业务需求

1.1 行情解码与转发

首先是行情转发,一家头部券商的技术负责人曾这样描述业务要求:“开盘的时候,光沪深逐笔数据的峰值写入差不多就要每秒50万条,我们一般要求转发全链路控制在毫秒级”。面对这样高吞吐、低延时的场景,传统架构已很难支撑业务需求。

1.2. 实时存储查询

除了全资产行情实时转码分发,对海量数据的实时存储查询是行情中心要满足的第二个主要需求。存储方面,以 MongoDB/MySQL 等传统数据库为例,不仅性能不足,行式存储结构的压缩率不足,也导致 PB 级数据存储成本十分高昂;查询方面,面对高频行情单表超过千亿的情况,查询性能十分低下,单次跨品种关联查询超10分钟,远不及业务预期。

1.3 复杂衍生计算

第三点,行情中心系统接入数据后,往往还需要同步完成订单簿合成、逐笔委托还原等复杂衍生计算,这一需求不仅要求系统有高性能的实时计算能力,对流计算开发与维护的便利性也有较高要求。以 Spark、Java、Flink等架构为例,实时因子计算、实时信号推理的时延通常超100ms,无法满足交易的时延要求。同时,这一类系统与金融交易场景的业务融合度不高,较难支撑一些复杂业务的衍生行情实时计算。

除了上述难题外,技术栈复杂导致的业务链条繁琐、上线周期长等状况,也是影响业务更新整体效率低下的一个重要问题。传统行情中心架构往往由多种系统拼凑搭建而成,如实时行情数据接入处理通常会用到 C++、Java 等编程语言,Flink、Spark 等计算引擎;行情数据存储通常会用到 MongoDB、ClickHouse 等数据库,盘后数据治理通常会用到 Python 等编程语言。这套复杂臃肿的传统架构,往往导致系统发生故障时定位耗时久,新策略、因子上线周期需要数月。

因此,如何构建一个具备毫秒级低时延响应、千万高吞吐、高并发、支持流计算任务敏捷开发的底层基座,以支撑多业务系统的实时处理,是众多券商、资管机构新建或升级行情中心亟待解决的问题。

2. “以数据为引擎”:DolphinDB 的一体化破题思路

作为一个实时计算平台,DolphinDB 底层基于高性能时序数据库构建,同时内置强大的流计算框架与多种支持复杂分析的业务工具。

面对行业共性难题,DolphinDB 没有选择“打补丁”式的优化,而是重新设计了一套“采-存-算-服”一体化架构。这种深度贴合业务的底层设计,帮助机构以数据为引擎,大幅提升行情处理与衍生计算的整体效率。

存储方面,DolphinDB 基于多模态存储引擎的设计,提供同一时间戳存储(满足交易数据不唯一性)、数组存储(多档报价数据存储)、宽表存储、co-location 存储(委托成交关联)、多模存储(时序+关系建模)、高可用等特性。

计算方面,DolphinDB 基于针对性优化过的2000+专业函数、10+流计算引擎与10+业务组件,提供数据透视与面板数据、非同步关联、流批一体、多表数据回放、多范式编程、即时编译等特性。

3. 改变的价值:从“成本中心”到“利润引擎”

基于 DolphinDB 建设的新型行情中心已落地多家头部券商、资管机构,这种新型行情中心带来的业务价值与改变大致可以总结为三点:

3.1 从存储查询到实时流计算,性能提升百倍

以落地多家机构的性能实测为例:

内存数据表

  • 平均单条数据写入时延 ≤ 10微秒
  • 键值保留最新值更新数据 ≤ 10微秒
  • 千万内存表数据检索性能 ≤ 20 毫秒

毫秒级流处理框架

  • 内置响应式状态引擎,实现行情解析→因子计算→信号输出全链路 ≤ 10毫秒
  • 内置 orderbook 合成引擎,支持任意频率增强快照,单笔 tick 平均处理时延 ≤ 600纳秒
  • 内置某股票交易所逐笔委托还原引擎,单笔 tick 平局处理时延 ≤ 500纳秒
  • 模拟撮合引擎,支持逐笔数据撮合模式,单笔撮合平均耗时 ≤ 1微秒

多模存储引擎

  • 时序数据列式存储+ZSTD 压缩,历史数据存储成本降低10倍
  • 创新混合分区策略
  • 万亿条数据下聚合查询响应 ≤ 50毫秒

3.2 系统架构化繁为简,存储成本降低70%

DolphinDB 的一体化架构,帮助用户告别维护多种技术栈复杂混乱的局面。通过将实时接入、流计算、历史存储等功能集成于单一平台,用户大幅降低了开发以及运维成本。同时,使用 DolphinDB 的列式存储+ ZSTD 压缩算法,可以使得历史行情数据的存储成本较传统数据库降低10倍。来自某券商的实践表明:PB 级数据压缩后仅需 300TB 磁盘空间,存储成本直降70%

3.3 强化机构竞争力,业务上线从数月到几周

速度与效率的提升,不仅体现在行情数据处理,更关乎业务迭代能力。DolphinDB 的流批一体设计,让量化策略从实验室到实盘的路径发生了质变。投研人员可以用同一套代码完成策略研发与生产部署,同时,搭配内置的数据回放、高频回测、模拟撮合、订单簿还原、估值定价、曲线拟合等业务组件的支持,投研人员能够像搭积木一样快速构建创新服务,大幅提升开发策略,以某头部券商的落地实践为例,在基于 DolphinDB 搭建新一代行情中心后,策略上线周期从3个月压缩至2周

4. 结语

在竞争激烈的市场交易中,“技术债”往往会转化为真金白银的代价。存储成本骤降释放的预算、开发效率提升抢占的市场窗口、实时能力支撑的创新业务,这些由 DolphinDB 新一代行情中心带来的改变,正在叠加发挥着乘数效应,帮助一众券商、资管机构将行情中心从后台“成本中心”,推向前台“利润引擎”的新位置。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值