此为自己学习课程的笔记,供自己复习用。
文章目录
前言
注意:
所有代码的执行时间 T(n) 与每行代码的执行次数 f(n) 成正比。
大O时间复杂度表示法:也叫渐进时间复杂度,简称时间复杂度。它实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势
- 用大O表示法时,一般只需记录一个最大量级就可以了。比如,当代码执行次数为n2+3n+5,可以表示为O(n2)。
一、分析代码时间复杂度的方法
1、只关注循环执行次数最多的一段代码
因为我们只需要记录最大阶的量级,因此我们只关注循环执行次数最多的代码就可以了。
2、总复杂度等于量级最大的那段代码的复杂度
3、嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
二、时间复杂度量级分类
可分为多项式量级和非多项式量级
- 非多项式量级只有两个:O(2n) 和 O(n!)。
- 时间复杂度为非多项式量级的算法问题叫作 NP(非确定多项式)问题。
多项式时间复杂度:
-
O(1):表示常量级时间复杂度。
一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。 -
O(logn)、O(nlogn)
如下代码:
int i = 1;
while(i <= n){
i = i * 2;
}
要计算出上面代码执行了多少次:
20=1, 21=2, 22=4, 23=8,…, 2x=n, 求x的值
x = log2n
因此时间复杂度为O(log2n)。
统一表示为 O(logn)
- O(m+n), O(m*n)
因为不知道m和n的量级谁大,所以写成两者加和的形式。
三、空间复杂度分析
空间复杂度:又叫渐进空间复杂度,表示算法的存储空间与数据规模之间的增长关系。