torch.randn()函数

torch.randn()函数用于生成一个填充了符合标准正态分布随机数的张量,其均值为0,方差为1。该函数接受size参数来定义张量的形状,并可指定输出张量的dtype、layout、device及是否记录梯度。示例展示了如何生成不同形状的随机张量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.randn()

torch.randn(*size, *, out=None, dtype=None, layout=torch.strided, 
device=None, requires_grad=False) → Tensor

返回一个符合均值为0,方差为1的正态分布(标准正态分布)中填充随机数的张量

Parameters

  • size(int…) --定义输出张量形状的整数序列。可以是数量可变的参数,也可以是列表或元组之类的集合。

Keyword Arguments

  • out(Tensor, optional) --输出张量
  • dtype(torch.dtype, optional) --返回张量所需的数据类型。默认:如果没有,使用全局默认值
  • layout(torch.layout, optional) --返回张量的期望布局。默认值:torch.strided
  • device(torch.device, optional) --返回张量的所需 device。默认:如果没有,则使用当前设备作为默认张量类型.(CPU或CUDA)
  • requires_grad(bool, optional)autograd是否应该记录对返回张量的操作(说明当前量是否需要在计算中保留对应的梯度信息)。默认值:False

Example:

>>> torch.randn(4)
tensor([-2.1436,  0.9966,  2.3426, -0.6366])
>>> torch.randn(2, 3)
tensor([[ 1.5954,  2.8929, -1.0923],
        [ 1.1719, -0.4709, -0.1996]])
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值