pytorch中tensorboard的使用

这篇博客介绍了如何利用TensorBoard来记录和展示机器学习模型的训练过程。通过`SummaryWriter`,作者在每个迭代步长(i)处添加了'y=x'的标量数据,并将其保存在'./log'目录下。最后,通过在终端运行`tensorboard --logdir=./log --port=6007`启动TensorBoard服务,可以可视化这些数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from tensorboardX import SummaryWriter
writer = SummaryWriter('./log')

for i in range(100):
    writer.add_scalar('y=x', i, i)

writer.close()

终端输入

tensorboard --logdir=./log --port=6007

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值