关于AIGC stable diffusion 在图像超分上的算法整理

参考文档:
c论文阅读基于Stable Diffusion的图像超分 - 知乎

十分钟读懂Stable Diffusion运行原理 - 知乎

1.difussion  model 扩散模型的基本原理

diffusion model 扩散模型是一类生成模型的统称,基于扩散过程生成数据。这类模型的核心是通过逐步加噪和去噪的过程生成数据样本。

扩散模型的三种主要表达方式:

1.去噪扩散概率模型(DDPM)

2.基于分数的生成模型(SGM)

3.随机微分方程(score sde)

对扩散过程的理解:假如有一副高清晰度的图片,每一步都图片上添加一些噪声,最终这幅图片变得完全模糊。扩散的任务就是学习如何逆转这过程,从一副白噪通过逐步去噪,最终还原出清晰地的图片。

扩散模型的核心思想包括两个主要过程:

第一个是正向扩散过程:即逐步向数据中添加噪声,时期转变为纯噪声,这个过程通常是一个马尔可夫链,每一步添加少量高斯噪声

第二个是逆向生成过程:学习从噪声中逐步去除噪声,恢复出原始数据,这个过程也是一个马尔可夫链,但方向相反,逐步去噪。

扩散模型的目的是什么?

学习如何从纯噪声生成图像

扩散模型是怎么做的?

训练一个网络,输入一系列添加了噪声的图潘,学习去预测这些图片中的噪声

2.基于stable difussion 对于图像超分的算法

1.stable SR

2.DIFFBIR

3.PASD

4.SEESR

5.PROMPTSR

6.COSER

7.SUPIR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值