图像超分经典网络ESRGAN精确解析

改进

为了进一步提高SRGAN的恢复图像质量,我们主要对发生器G的结构做了两个修改:1)去除所有BN层;2)用所提出的残差中残密块(residual -in- residual密块,RRDB)代替原来的基本块,它结合了多级残差网络和密集连接。

在不同的psnr导向任务(包括SR和去模糊)中,去除BN层已被证明可以提高性能并降低计算复杂度。BN层在训练过程中使用批量的均值和方差对特征进行归一化,在测试过程中使用整个训练数据集的估计均值和方差。当训练数据集和测试数据集的统计差异较大时,BN层容易引入不愉快的工件,限制泛化能力

除了改进的架构,我们还利用了一些技术来促进训练一个非常深入的网络:1)残差缩放[21,20],即在将残差添加到主路径之前,通过在0到1之间乘一个常数来缩小残差,以防止不稳定;2)更小的初始化,因为我们的经验发现,当初始参数方差变小时,残差架构更容易训练

除了改进了发生器的结构外,我们还改进了基于相对论GAN[2]的鉴别器。与标准鉴别器Din SRGAN估计一个输入图像x是真实和自然的概率不同,相对论鉴别器试图预测真实图像xr相对于假图像xf更真实的概率。

我们还开发了一种更有效的感知损失lperception,通过在激活前约束特征,而不是像SRGAN中那样在激活后约束特征

感知损失在预先训练的深度网络的激活层上预先定义,其中两个激活特征之间的距离是最小的,与惯例相反,我们建议在激活层之前使用特性,这将克服原始设计的两个缺点。首先,激活的特征是非常稀疏的,特别是在一个非常深的网络之后,例如,图像“狒狒”在VGG19-543层后激活神经元的平均百分比仅为11.17%。稀疏激活提供了薄弱的监督,从而导致较差的性能。其次,使用激活后的特征也会导致重建亮度与地面真实图像不一致。

我们已经提出了一个ESRGAN模型,它比以前的SR方法获得了一致更好的感知质量。该方法在感知指标方面获得了PIRM-SR挑战赛的第一名。我们制定了一个包含多个RRDB块的新架构,没有BN层。此外,利用残差缩放和更小的初始化等有用的技术来促进所提出的深度模型的训练。我们还介绍了使用相对论GAN作为鉴别器,它学会判断一个图像是否比另一个图像更真实,引导生成器恢复更详细的纹理。此外,我们利用激活前的特征增强了感知损失,提供了更强的监督,从而恢复更准确的亮度和逼真的纹理。

<think>好的,我现在需要帮用户解析这个三维重建流程的流程图,并做一个介绍。首先,我得仔细看看用户提供的结构图,理解每个步骤的作用和它们之间的联系。流程图看起来成了几个主要阶段,从输入图像开始,经过标定、特征提取、遮挡处理、辨率、匹配视差计算,最后到三维重建。 首先,用户可能希望了解每个模块的具体功能以及它们如何衔接。比如,相机标定与校正这一步,可能涉及获取内外参数,消除畸变,极线校正让左右图像在同一平面上,方便后续匹配。我需要解释清楚这些术语,比如极线校正的作用,可能用户不太熟悉,需要用简单的语言说明。 然后是稀疏特征提取,这里提到了SIFT/ORB等算法。这部需要说明这些特征点的作用,为什么选择这些算法,可能提到它们的旋转、尺度不变性,适合匹配。接下来是初步匹配和遮挡检测,这里可能存在左右一致性检查,比如利用左右图像的匹配点对来找出遮挡区域,这时候可能需要替换或补充特征,确保后续处理的准确性。 辨率处理部,用户提到了SRCNN和ESRGAN,这些是常见的模型,用来提升图像辨率,帮助更精确的匹配。需要解释如何影响后续的视差计算,比如高辨率图像能提供更多细节,减少匹配误差。 精确特征匹配与视差计算,可能涉及光流法或深度学习模型,比如RAFT等,视差图转换为深度图,这里可能需要说明视差和深度的关系,以及如何通过几何原理转换。 最后的三维重建部,提到了MVSNet和PatchMatchNet,这些是多视图立体匹配的深度学习模型,利用深度图生成三维点云或网格,输出模型。需要强调这些算法如何整合前面的数据,完成重建。 在整理结构时,要确保每个步骤之间的箭头流向解释清楚,比如为什么遮挡检测后需要辨率,或者视差图如何用于三维重建。同时,注意用户提到的系统级指令,数学公式要用$...$,比如视差公式$d = B \cdot f / z$,可能需要插入到合适的位置,但用户提供的流程图中没有明显公式,所以可能需要判断是否需要添加。 另外,用户要求结构清晰,逐步解决,所以可能需要步骤解释,每个模块作为一个小节,说明输入输出和处理方法。注意使用中文术语,避免专业术语过于晦涩,必要时进行简要解释。 检查是否有遗漏的环节,比如遮挡检测后的特征互补如何影响辨率处理,或者辨率后的高辨率图像如何反馈到精确匹配中。确保整个流程逻辑连贯,没有断点。 最后,总结整个流程的优势或应用场景,比如高精度的三维重建在AR、VR、自动驾驶中的应用,或者结合技术提升精度的创新点。这样用户不仅能理解流程,还能知道其价值和用途。</think>以下是步骤解释的三维重建流程说明(结合流程图结构): 一、输入预处理阶段 $$输入左右原始图像$$ 1. 输入双目相机采集的左右视图原始数据 2. 需保证图像对满足双目视觉的基线要求(一般基线距离$B$与场景深度$z$满足$B < z/10$) 二、相机标定与极线校正 $$相机标定与校正 \Rightarrow 标定参数、极线校正$$ 1. 通过棋盘格标定获取: - 内参矩阵$K$(包含焦距$f$、主点坐标等) - 外参矩阵$[R|t]$(描述左右相机相对位姿) 2. 极线校正: - 通过Hartley算法使对应点位于同一水平扫描线 - 消除垂直视差,满足极线约束方程$x_r = x_l + d$ 三、特征处理流程 +-------------------+ | 稀疏特征提取(左右)| +-------------------+ ↓ SIFT/ORB等 $$特征描述子生成$$ 1. SIFT特征: - 构建尺度空间$L(x,y,\sigma)=G(x,y,\sigma)*I(x,y)$ - 检测DoG极值点:$D(x,y,\sigma)=L(x,y,k\sigma)-L(x,y,\sigma)$ 2. ORB特征: - 使用oFAST检测器与rBRIEF描述子 - 计算特征方向:$m_{pq} = \sum_{x,y} x^p y^q I(x,y)$ 四、匹配优化阶段 +-------------------------+ | 初步匹配及遮挡区域检测 | +-------------------------+ ↓ 左右一致性检查 1. 基于描述子的暴力匹配/NN匹配 2. 遮挡检测方法: - 左右一致性检验:$|d_{l→r} + d_{r→l}| < \epsilon$ - 生成遮挡掩膜$M_{occlusion} = \{ (x,y) | NCC(x,y) < \tau \}$ 五、辨率增强 $$辨率处理 \Rightarrow SRCNN/ESRGAN等$$ 1. SRCNN网络结构: - 特征提取:$F_1 = \max(0, W_1 * I_{LR} + B_1)$ - 非线性映射:$F_2 = \max(0, W_2 * F_1 + B_2)$ - 重建层:$I_{SR} = W_3 * F_2 + B_3$ 2. ESRGAN改进: - 引入残差密集块(RRDB) - 使用相对判别器提升纹理细节 六、视差计算与三维重建 +-------------------------+ | 精确特征匹配与视差计算 | +-------------------------+ ↓ 光流/深度学习匹配 1. 视差优化方法: - Semi-Global Matching(SGM): $$E(D) = \sum_{p}(C(p,D_p) + \sum_{q∈N_p}P_1 T[|D_p - D_q|=1] + \sum_{q∈N_p}P_2 T[|D_p - D_q|>1])$$ - GC-Net等深度学习模型 +-------------------------+ | 视差图/深度图 | +-------------------------+ ↓ 三维重建 1. 深度计算原理: $$z = \frac{B \cdot f}{d}$$ 其中$B$为基线距,$f$为焦距,$d$为视差 七、输出阶段 $$三维重建 \Rightarrow MVSNet/PatchMatchNet等$$ 1. MVSNet流程: - 构建代价体(Cost Volume) - 3D CNN正则化 - 深度图优化 2. 点云生成: $$X = \frac{(u - c_x) \cdot z}{f_x}, Y = \frac{(v - c_y) \cdot z}{f_y}, Z = z$$ 该流程特点: 1. 通过特征互补解决遮挡问题 2. 辨率模块提升细节重建精度 3. 结合传统方法与深度学习优势 4. 典型应用误差范围:深度误差<1%(在基线距50cm,距离5m场景下)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值