一.摘要
在本研究中,我们利用从CT图像中提取的一系列特征对covid-19进行诊断。为了充分探索从不同的视角描述CT图像的多个特征,学习了一种统一的潜在表示法,它可以完全编码来自特征的不同方面的信息,并具有良好的可分性类结构。
二.简介
在本研究中,我们的重点是对covid-19和社区获得性肺炎进行诊断,即描述CT图像中多种类型特征与这些疾病之间的关系,为自动诊断和调查提供了一个可能的模型。首先,不同类型的特征在分布和质量上有很大的不同,因此有效地整合这些差异是非常具有挑战性。针对此问题,提出了一组神经网络的新的集成策略,每种神经网络将一种特征的信息编码为潜在表示。其次,我们通过投影学习来建立一个精确的模型,将一个具有这些多种类型特征的主题映射为一个潜在的表征,从而得到一个潜在的表征回归变量可应用于新学科。第三,基于潜在表示,而不是原始特征来训练最终的分类器。
因为这种潜在的表示有下面的优点:
第一:优势是潜在的表示,这通常是紧凑的,因此可能更有效,因为它可以避免对高维数据的过拟合,并且在测试阶段有更好的泛化。
第二:所提出的模型可以编码来自不同类型特征的信息,并产生一个结构化表示。
第三:此外,学习到的表示可以用于不同的分类模型,并且学习到的潜在表示的性能明显优于原始表示。
三.数据
本次使用的数据集涉及2522张CT图像,其中1495例来自covid-19患者,其中1027例来自社区性肺炎(CAP)患者。这些covid-19感染者经核酸检测阳性,经中国疾病预防控制中心(CDC)确诊。通过V-Net对原始CT图进行处理,然后制作成了各种特征如下表:
四.方法
为了有效地利用CT图像的多种特征,我们提出了一个基于潜在表示的诊断模型,该模型由三个部分组成。首先,基于CMP-Nets,我们学习具有信息完整性和有希望的类结构的潜在表示。其次,为了保证训练和测试之间的潜在空间的一致性,我们在7种原始特征之间训练了一个称为潜在表示回归变量的投影模型潜在的表示。最后,训练了一个基于潜在表示的诊断分类器。因此,在测试阶段,利用潜在表示回归器将原始特征投影到潜在空间中,然后利用基于潜在表示的分类器得到最终的诊断结果。他的大致流程如下图:
论文中网络结构图如下:
4.1第一步:完整和结构化的表示学习
考虑到我们的目标是区分与covid-19和CAP相关的两种CT图像,我们不仅学习了编码异质特征信息,同时也反映了不同类的分布情况。然后,潜在的表示将是包含了多种信息的和可分离的。
(1)潜在的表示的完整性
首先,我们的目标是灵活、有效地将每个主题的不同类型的信息整合到一个低维空间中,其中所需的潜在表示应该包含所有类型的特性。
(2)潜在表示的结构化
其次,我们的目标是使学习到的潜在表征对这两种不同的肺炎疾病的结构良好。结构化表示的损失是:
第一步最终的目标函数为:
4.2学习原始特征到潜在表示的映射
但是,我们应该注意到,我们现在还不能在测试阶段获得潜在的表示。因此,我们的目标是设计一个潜在的表示回归器来准确地把一个主体的特征变成了一个潜在的表征。通过学习到每个视图的表示然后将它做一个平均便得到整体的表示:
4.3基于潜在表示的分类器
在获得潜在表示后,我们的目标训练一个基于潜在表示的分类器,可以诊断covid-2019和CAP的感染者。为简单起见,我们使用了一个以三个全连接层的神经网络作为基于潜在表示的分类器。在我们的分类任务中采用了广泛使用的交叉熵损失。