1.卷积简介
卷积运算的目的是提取输入的不同特征,某些卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网路能从低级特征中迭代提取更复杂的特征。实际使用中往往与BN(批量归一化)、激活函数搭配使用。
卷积和池化区别:卷积往往需要学习参数w和b,池化不需要学习。
卷积层后往往加激活函数进行非线性变换,池化不需要。
2. 卷积输出尺寸
卷积后图片输出后尺寸:
N = W + 2 P − F s ( 下取整 ) + 1 N =\frac{W + 2P - F}{s} (下取整)+ 1 N=sW+2P−F(下取整)