布隆过滤器(Bloom Filter)简单介绍

布隆过滤器(Bloom Filter)

布隆过滤器,用很长的二进制矢量和哈希函数实现,主要作用是快速判断一个元素是否在集合中。

它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。

主要特点是如果过滤器判断一个元素不在集合中,那么这个元素必定不在该集合中。命题的否命题则不成立

原理

在这里插入图片描述

  1. 初始化长度为n比特的数组,每个比特初始化为0
  2. 设置k个hash函数,每个hash函数可以将key散列为一个整数(该整数应该小于数组长度)
  3. 当某个key加入集合时,用k个hash函数计算出k个散列值,并把数组中对应的位置的比特置为1
  4. 判断某个key是否在集合中时,用k个hash函数计算出k个散列值,查询数组中对应的比特位,如果对应的所有比特位都为1,则认为该key在集合中

误判情况分析

误判率与hash函数个数k,位数组长度m,插入元素个数n有关。

m,n确定时 k = m n l n 2 ≈ 0.7 m n k = \frac{m}nln2 \approx 0.7\frac{m}n k=nmln20.7nm

对于给定的误算率p,最优的位数组大小 m = − n l n p ( l n 2 ) 2 m = - \frac{nlnp}{(ln2)^2} m=(ln2)2nlnp,m应该与n成正比

二进制矢量,这里是位数组,每个元素大小为1bit,100万个bit: 1 × 1 0 6 b i t = 125 × 1 0 3 B ≈ 122 K B 1\times10^6bit = 125\times10^3B \approx122KB 1×106bit=125×103B122KB

在这里插入图片描述

Bloom Filter 用例

Google 著名的分布式数据库 Bigtable 使用了布隆过滤器来查找不存在的行或列,以减少磁盘查找的IO次数。
Squid 网页代理缓存服务器在 cache digests 中使用了也布隆过滤器。
Venti 文档存储系统也采用布隆过滤器来检测先前存储的数据。
SPIN 模型检测器也使用布隆过滤器在大规模验证问题时跟踪可达状态空间。
Google Chrome浏览器使用了布隆过滤器加速安全浏览服务。
在很多Key-Value系统中也使用了布隆过滤器来加快查询过程,如 Hbase,Accumulo,Leveldb,一般而言,Value 保存在磁盘中,访问磁盘需要花费大量时间,然而使用布隆过滤器可以快速判断某个Key对应的Value是否存在,因此可以避免很多不必要的磁盘IO操作,只是引入布隆过滤器会带来一定的内存消耗,下图是在Key-Value系统中布隆过滤器的典型使用:
在这里插入图片描述

参考:
参考
参考

布隆过滤器Bloom Filter)是一种重要的数据结构,它用于快速判断一个元素是否存在于一个集合中。布隆过滤器的核心思想是通过一系列哈希函数来对元素进行多次哈希,然后将得到的哈希值映射到一个位数组中,并将对应的位置设为1。当需要判断一个元素是否存在时,同样对其进行多次哈希,检查对应位数组的值是否都为1,若都为1则可以确定元素可能存在;若存在一个0,则可以确定元素一定不存在。因此,布隆过滤器是一种基于概率的数据结构,可以高效地进行查找。 然而,布隆过滤器也存在一些问题。首先,由于多个不同的元素可能会哈希到相同的位上,因此在查询时可能出现误判,即判断一个元素存在时实际上并不存在。这种误判是由于多个元素共享了某一位的原因导致的。其次,布隆过滤器的特性决定了它无法支持元素的删除操作,因为删除一个元素可能会影响其他元素的判断结果,从而增加误判率。 要注意的是,计数布隆过滤器(Counting Bloom Filter)提供了一种实现删除操作的可能性,但并不能保证在后续查询时该值一定返回不存在。因此,不能说计数布隆过滤器支持删除,而是说计数布隆过滤器提供了实现删除的可能。 [3<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [【海量数据处理】布隆过滤器BloomFilter](https://blog.csdn.net/qq_43727529/article/details/127180864)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *3* [Java --- redis7之布隆过滤器BloomFilter](https://blog.csdn.net/qq_46093575/article/details/130613434)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值