交叉熵损失函数的优点

博客探讨了激活函数和损失函数对梯度收敛的影响。使用饱和激活函数如sigmoid并采用均方误差损失时,梯度更新不稳定,收敛时间长;而改成交叉熵损失后,梯度与激活函数导数无关,收敛较快,且多分类交叉熵损失求导简单,能加快权重矩阵更新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

利用一些饱和激活函数的如sigmoid激活时,假如利用均方误差损失,那么损失函数向最后一层的权重传递梯度时,梯度公式为

可见梯度与最后一层的激活函数的导数成正比,因此,如果起始输出值比较大,也即激活函数的导数比较小,那么整个梯度幅度更新幅度都比较小,收敛时间很长。若一开始输出值比较小那么更新速度比较好,收敛也快,因此不稳定。且与输出值a与真实值的误差成正比。

再看损失函数改成交叉熵损失时:

此时损失函数对于最后一层权重的梯度不再跟激活函数的导数相关,只跟输出值和真实值的差值成正比,此时收敛较快。又反向传播是连乘的,因此整个权重矩阵的更新都会加快。

 

另外,多分类交叉熵损失求导更简单,损失仅与正确类别的概率有关。而且损失对于softmax激活层的输入求导很简单。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值