一、前言
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵。作为解决线性方程的工具,矩阵也有不短的历史。用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。
一、矩阵加减运算
矩阵的加法满足一下性质
设A,B,C,O为同一类型矩阵(同类型矩阵是指具有相同的行数和列数),O矩阵表示所有元素为0。
(1)A+B=B+A;
(1)A+(B+C)=(A+B)+C;
(1)A+O=A;
假设A=[123456789]\begin{bmatrix}
1&2&3\\ 4&5&6\\7&8&9\\
\end{bmatrix}⎣⎡147258369⎦⎤,B=[123456789]\begin{bmatrix}
1&2&3\\ 4&5&6\\7&8&9\\
\end{bmatrix}⎣⎡147258369⎦⎤ → A+B=[1+12+23+34+45+56+67+78+89+9]\begin{bmatrix}
1+1&2+2&3+3\\ 4+4&5+5&6+6\\7+7&8+8&9+9\\
\end{bmatrix}⎣⎡1+14+47+72+25+58+83+36+69+9⎦⎤
二、矩阵数乘运算
设A,B为同一类型矩阵(同类型矩阵是指具有相同的行数和列数),k,l为任意实数。
(1)(kl)A=k (lA) (2) (k+l)A=kA+lA
(3)k(A+B)=kA+kB (4)kA=Ak
假设A=[1−23450]\begin{bmatrix}
1&-2&3\\ 4&5&0\\
\end{bmatrix}[14−2530],B=[−312106]\begin{bmatrix}
-3&1&2\\ 1&0&6\\
\end{bmatrix}[−311026]
3A+2B=[3−6912150]\begin{bmatrix}
3&-6&9\\ 12&15&0\\
\end{bmatrix}[312−61590]+[−6242012]\begin{bmatrix}
-6&2&4\\ 2&0&12\\
\end{bmatrix}[−6220412]=[−3−413141512]\begin{bmatrix}
-3&-4&13\\ 14&15&12\\
\end{bmatrix}[−314−4151312]
二、矩阵的乘法
对于矩阵Am×s=(aij),Bs×n=(bij),那么AB=Cm×n=(cij)。需要注意的是左边的列数一定要等于右边的行数。
假设A=[123231]\begin{bmatrix}
1&2&3\\ 2&3&1\\
\end{bmatrix}[122331],B=[142536]\begin{bmatrix}
1&4\\2 &5\\3&6\\
\end{bmatrix}⎣⎡123456⎦⎤
那么AB=[123231]\begin{bmatrix}
1&2&3\\ 2&3&1\\
\end{bmatrix}[122331][142536]\begin{bmatrix}
1&4\\2 &5\\3&6\\
\end{bmatrix}⎣⎡123456⎦⎤ =[1×1+2×2+3×31×4+2×4+3×62×1+3×2+1×32×4+3×5+1×6]\begin{bmatrix}
1×1+2×2+3×3&1×4+2×4+3×6\\ 2×1+3×2+1×3&2×4+3×5+1×6\\
\end{bmatrix}[1×1+2×2+3×32×1+3×2+1×31×4+2×4+3×62×4+3×5+1×6]=[14301129]\begin{bmatrix}
14&30\\11&29\\
\end{bmatrix}[14113029]
我们反过来讲B与A相乘
那么BA=[142536]\begin{bmatrix}
1&4\\2 &5\\3&6\\
\end{bmatrix}⎣⎡123456⎦⎤ [123231]\begin{bmatrix}
1&2&3\\ 2&3&1\\
\end{bmatrix}[122331] =[1×1+4×21×2+4×31×3+4×12×1+5×22×2+5×32×3+5×13×1+6×23×2+6×33×3+6×1]\begin{bmatrix}
1×1+4×2&1×2+4×3&1×3+4×1\\
2×1+5×2&2×2+5×3&2×3+5×1\\
3×1+6×2&3×2+6×3&3×3+6×1\\
\end{bmatrix}⎣⎡1×1+4×22×1+5×23×1+6×21×2+4×32×2+5×33×2+6×31×3+4×12×3+5×13×3+6×1⎦⎤
=[9147121911152415]\begin{bmatrix}
9&14&7\\
12&19&11\\
15&24&15\\
\end{bmatrix}⎣⎡9121514192471115⎦⎤
从上我们可以看出AB≠BA;
总结:
(1)矩阵相乘必须满足:左边矩阵的列数等于右边矩阵的行数,否则不能进行乘法运算
(2)两个矩阵相乘一般不可以交换
(3)两个矩阵相乘,结果可能是零矩阵,因此不能有AB=0,得出A=0或B=0,同样不能由AB=AC得出B=C。
(矩阵相乘满足结合律,不满足交换律)